TY - GEN A1 - Schneider, Bettina T1 - Finanzierung und Liquiditätssicherung. Teil 2. BWL für Ingenieure N2 - Finanzierung und Liquiditätssicherung. Teil 2. BWL für Ingenieure. 12 Folien Neue Version vom 6.12.2004 3. Finanzierungsquellen Zugriff nur innerhalb des Campus oder per Virtual Private Network VPN KW - Finanzierung KW - Liquiditätspolitik KW - Betriebswirtschaftslehre Y1 - 2004 ER - TY - GEN A1 - Schneider, Bettina T1 - Finanzierung und Liquiditätssicherung. Teil 1. BWL für Ingenieure N2 - Finanzierung und Liquiditätssicherung. Teil 1. BWL für Ingenieure. 10 Folien neue Version vom 06.12.2004 Gliederung: 1. Begriffe und Ziele 2. Finanzplanung 3. Finanzierungsquellen Zugriff nur auf dem Campus oder per Virtual Private Network VPN KW - Finanzierung KW - Liquiditätspolitik KW - Betriebswirtschaftslehre Y1 - 2004 ER - TY - GEN A1 - Junold, Thomas T1 - Schwarz. Weiss. Ein dokumentierter Schriftentwurf T1 - Black. White. A commented type design N2 - Schwarz und Weiß. Schwarze Glyphen, weiße Gegenformen. Schwarze Zeilen, Weißraum als Gestaltungselement. Schwarze Schrift auf weißem Papier. Schrift als Kommunikationselement. Vereinheitlichte und vereinfachte Formen, dank Jahrhunderte langer Gewöhnung oder Experimentierfeld für Formen, die sich mit verändernden Techniken gleichermaßen verändern? Schrift als Vermittler von Emotionen oder reine Information. Was macht eine Schrift lesbar und was steht einer »Display-Schrift« gut zu Gesicht? Sind Schriftsippen mit über hundert Schnitten Anwenderfreundlich oder eher Grund für Verwirrung. Serifenschrift oder Sans-Serif? Was ist moderner? Sind wir Kinder der Helvetica oder der Frutiger oder eher Enkel der Garamond oder Bodoni? Kann man ein ästhetisches Empfinden für Schrift lernen? Eine Schrift als Beweis, ausgebaut für eine sinnvolle Verwendung, hinterfragt durch einen Markt schon während ihrer Entstehung. Rückführung und Begründung der aufgeführten Fragen auf diese Schrift. Ein Diplom, das nachdenkt über Schrift, das Schrift anbietet, den Dialog mit Schrift fordert. N2 - When asked why there are so many typefaces, Adrian Frutiger used to reply: “Because there is so many wines.” Source: Fontblog Black and white. Black glyphs, white counters. Black lines of text, white space as design element. Black type on white paper. Type as an element of comunication. Unified and simplified forms, that change along ever-changing technology? Typefaces as mediators of emotion or pure information. What makes a typeface readable and what makes a pure display typeface pleasant? Are typeface superfamilies with more that a hundered styles user friendly or a blessing or a curse? Serifed or unserifed? What is more modern? Are we the children of Helvetica or Frutiger, or the grandchildren of Garamond and Bodoni? Can a sensitivity to the power of type be learned? A typeface as a proof, equipped for sensible use, and questioned by the market already during its conception. Feedback and integration of these questions in the typeface. A “diploma” that thinks about type, that offers type, that calls for dialogue with type. By using type, you take responsibility. KW - Schriftkunst KW - Forum Typografie KW - Typographie KW - Spiekermann KW - Erik KW - Actor KW - Schrift KW - Open Type KW - Schriftentwurf KW - Fontlab KW - actor KW - font KW - open type KW - typedesign KW - fontlab Y1 - 2006 ER - TY - JOUR A1 - Gebhardt, Andreas T1 - Generative Manufacturing of Ceramic Parts "Vision Rapid Prototyping" N2 - Table of Contents Introduction 1. Generative Manufacturing Processes 2. Classification of Generative Manufacturing Processes 3. Application of Generative Processes on the Fabrication of Ceramic Parts 3.1 Extrusion 3.2 3D-Printing 3.3 Sintering – Laser Sintering 3.4 Layer-Laminate Processes 3.5 Stereolithography (sometimes written: Stereo Lithography) 4. Layer Milling 5. Conclusion - Vision KW - Rapid prototyping KW - Rapid Technologie KW - Rapid Prototyping Y1 - 2006 ER - TY - CHAP A1 - Gebhardt, Andreas T1 - Technology Diffusion through a Multi-Level Technology Transfer Infrastructure. Contribution to the 1st. All Africa Technology Diffusion Conference Boksburg, South Africa June 12th - 14th 2006 N2 - Table of contents 1. Introduction 2. Multi-level Technology Transfer Infrastructure 2.1 Level 1: University Education – Encourage the Idea of becoming an Entrepreneur 2.2 Level 2: Post Graduate Education – Improve your skills and focus it on a product family. 2.3 Level 3: Birth of a Company – Focus your skills on a product and a market segment. 2.4 Level 4: Ready to stand alone – Set up your own business 2.5 Level 5: Grow to be Strong – Develop your business 2.6 Level 6: Competitive and independent – Stay innovative. 3. Samples 3.1 Sample 1: Laser Processing and Consulting Centre, LBBZ 3.2 Sample 2: Prototyping Centre, CP 4. Funding - Waste money or even lost Money? 5. Conclusion KW - Technologietransfer KW - technology transfer KW - technology diffusion Y1 - 2006 ER - TY - JOUR T1 - Fachblatt, Jahrgang 2006; Nr. 1 N2 - Studienbeiträge Die schwere Geburt des Studienbeitragsgesetzes Forschung Erfindungen für die Praxis Antikensammlung inszeniert in geschwungener Ebenenkonstruktion Doppelt hält besser Studium und Lehre Kreative Höhenflüge im Weinberg von Piemont Nach "Bauhaus Europa" jetzt "Kunsthaus Aachen" Beton - Es kommt drauf an, was man draus macht "Ein Stück Raumfahrtsystem" Film ab im Cinekaree Umstellung auf Bachelor- und Master-Abschlüsse beispielhaft Herausragende architektonische Umsetzung geehrt Erdbeobachtung im Taschenformat Die Hygiene im Handgepäck Eintauchen in die Welt von "sub-ten" Symposium zur 1. Flugmesswoche des FB 6 Personen Konsul mit Zeitungsente Der richtige Mann am richtigen Ort Urlaub fürs Ehrenamt 101 und ziemlich weise Goldene Auszeichnung für die Dekanin Wir feiern heute unsere Eliten Eigene Faszination für den Lehrstoff fesselt Studierende Personalia Horst Rambau: Endstation Selbstständigkeit? Der gute Ruf reicht bis Teheran Alumni "Regen ist gut für unser Geschäft" FH-Studenten aus Jülich in der Wissenschaft erfolgreich Miss und Mister FH 2005 International Vor 20 Jahren begann es! "Heute ist ein guter Tag für die Fachhochschule" Service Bologna ist längst bei den Hochschulen angekommen Auch Lehrer lernen nie aus Was ist eigentlich das Freshman-Year "Zeile für Zeile" T3 - Fachblatt / FH Aachen - 2006, 1 KW - Aachen / Fachhochschule Aachen KW - Fachhochschule Aachen KW - Aachen University of Applied Sciences Y1 - 2006 ER - TY - CHAP A1 - Brüssermann, Klaus A1 - Deuster, M. T1 - Temperature measurement to optimise the burning process N2 - One of the most important parameters in a burning chamber - in power stations, in waste to energy plants - is the temperature. This temperature is in the range of 700-1500 °C - one of the most advanced measuring methods being the acoustic pyrometry with the possibility of producing temperature mapping in one level of the burning chamber - comparable to computer tomography. The results of these measurements discussed in the presentation can be used - to fulfil the legal requirements in the FRG or in the EU - to equalise the temperature in one level of the burning chamber to optimise the steam production (better efficiency of the plant) and to minimise the production of temperature controlled flue gas components (NO, CO a. o.) - to control the SNCR-process if used. KW - Pyrometrie KW - Temperaturmessung KW - temperature measurement KW - acoustic pyrometry KW - steam production KW - flue gas components Y1 - 2005 ER - TY - CHAP A1 - Brüssermann, Klaus T1 - Platform of Excellence in "Energy and Environment" N2 - The Ministry of Science and Research in North Rhine-Westphalia created eight platforms of excellence, one in the research area „Energy and Environment“ in 2002 at ACUAS. This platform concentrates the research and development of 13 professors in Jülich and Aachen and of two scientific institutes with different topics: – NOWUM-Energy with emphasis on efficient and economic energy conversion – The Solar Institute Jülich – SIJ – being the largest research institute in the field of renewables at a University of Applied Sciences in Germany With this platform each possible energy conversion – nuclear, fossil, renewable- can be dealt with to help solving the two most important problems of mankind, energy and potable water. At the CSE are presented the historical development, some research results and the combined master studies in „Energy Systems“ and „Nuclear Applications“ KW - Energietechnik KW - Kernenergie KW - Umwelt KW - Energy KW - environment KW - Energy Systems KW - Nuclear Applications Y1 - 2005 ER - TY - JOUR A1 - Gebhardt, Andreas T1 - Rapid Manufacturing - eine interdisziplinäre Strategie N2 - Als um 1987 ein Verfahren namens Stereolithographie und ein Stereolithography Apparatus (SLA) vorgestellt wurden, war der Traum von der Herstellung beliebiger dreidimensionaler Bauteile direkt aus Computerdaten und ohne bauteilspezifische Werkzeuge Realität geworden. Ein Anwendungs-Szenario wurde gleich mitgeliefert. Diese Technologie würde es möglich machen, die gesamte Ersatzteilversorgung der Amerikanischen Pazifikflotte mittels ein paar dieser Maschinen, umfangreicher Datenstätze und genügend Rohmaterial vor Ort auf einem Flugzeugträger direkt nach Bedarf zu fertigen. Diese Vorstellung definierte schon damals die direkte digitale Fertigung, das Rapid Manufacturing. In der Realität bestanden die mit diesem Verfahren hergestellten Bauteile nur aus Kunststoff, waren ungenau, bruchempfindlich und klebrig und allein in der Produktentwicklung, eben als Prototypen zu benutzen. Sie waren schnell verfügbar, weil zu Ihrer Herstellung keine Werkzeuge benötigt wurden. Folgerichtige und zudem modern hießen sie: Rapid Prototyping. Rapid Prototyping wurde schnell zum Synonym eines neuen Zweiges der Fertigungstechnik, der Generativen Fertigungstechnik. Die weitere Entwicklung brachte neue Verfahren, höhere Genauigkeiten, verbesserte Werkstoffe und neue Anwendungen. Die Herstellung von Negativen, also Werkzeugen, mit dem gleichen Verfahren wurde marketing-getrieben Rapid Tooling genannt und als die ersten Bauteile nicht mehr als Prototypen, sondern als Endprodukte eingesetzt wurden, nannte man dies Rapid Manufacturing - das Ziel war erreicht. War das Ziel wirklich erreicht? Ist es Rapid Manufacturing, wenn ein generativ gefertigtes Bauteil die gewünschte Spezifikation erreicht? Was muss passieren, damit aus dem Phänomen Rapid Prototyping eine Strategie wird, die geeignet ist, einen Paradigmenwechsel von der heutigen Hersteller-induzierten Massenproduktion von Massenartikeln zur Verbraucher-induzierten (und verantworteten) Massenproduktion von Einzelteilen für jedermann ermöglichen und möglicherweise unsere Arbeits- und Lebensformen tiefgreifend zu beeinflussen? Im Beitrag wird der Begriff der (Fertigungs-) Strategie „Rapid Manufacturing“ näher beleuchtet. Es wird diskutiert, welche Maßnahmen auf der technischen und der operative Ebene getroffen werden müssen, damit die generative Fertigungstechnik im Sinne dieser Strategie umgesetzt werden kann. Beispiele belegen, dass diese Entwicklung bereits begonnen hat und geben Anregungen für eine konstruktive Diskussion auf der RapidTech 2006. N2 - As a process called stereolithography and a stereolithography apparatus (SLA) was presented in 1987, the dream of manufacturing any three-dimensional component directly from computer data and without component-specific tools became reality. An application scenario was supplied at the same time. This technology would make it possible to produce the entire spare parts requirement of the American Pacific Fleet merely through the use of a couple of such machines, extensive datasets and enough raw material on board an aircraft carrier directly as required. This image defined direct digital fabrication, rapid manufacturing, even at that time. In reality, this procedure only managed to produce components in plastic which were imprecise, fragile and sticky and only usable as prototypes in product development. They were rapidly available, because no tools were required for their manufacture. Consequentially, they are now known as Rapid Prototyping in modern jargon. Rapid Prototyping quickly became a synonym for a new branch of production engineering known as generative production engineering. Continued development brought new processes, improved accuracy, improved materials and new applications. The manufacturing of negatives, in other words tools, using the same procedure was quickly named rapid tooling by the marketing sector, and once the first components were used as final products instead of just prototypes the process was renamed "rapid manufacturing" - the goal had been reached. Was the goal really reached? Is it rapid manufacturing if a generatively manufactured component reaches the required specifications? What has to happen so that the rapid prototyping phenomenon becomes a strategy which is suitable for enabling the paradigm change from current manufacture-induced mass production of mass articles to consumer-induced (and consumer-responsible) mass production of single parts for anyone, and in all possibility makes dramatic changes in our way of working and living? The lecture includes detailed information about the (production) strategy term "rapid manufacturing". We will be discussing which measures need to be taken on the technical and operative level so that generative production engineering can be implemented in the sense of this strategy. Examples will show that this development has already started, and should provoke stimulation leading to constructive discussion during RapidTech 2006. KW - Rapid prototyping KW - Rapid Manufacturing KW - Rapid Prototyping KW - Stereolithographie KW - Generative Fertigungstechnik KW - Rapid prototyping KW - rapid manufacturing Y1 - 2006 ER - TY - JOUR A1 - Gebhardt, Andreas A1 - Brücker, Christoph A1 - Schmidt, Frank-Michael T1 - RP gestützte Herstellung komplexer transparenter Hohlräume für die Strömungsanalyse N2 - Die Berechnung der Durchströmung von Bauteilen ist gegenüber derjenigen von umströmten Bauteilen deutlich im Hintertreffen. Das liegt vor allem an der fehlenden Verfügbarkeit geeigneter optisch transparenter Modellkanäle für die experimentelle Analyse. Der Beitrag stellt ein Verfahren zur Herstellung transparenter durchströmter Geometrien auf der Basis generativ gefertigter Urmodelle vor. Damit können beliebig komplexe Innenströmungen optisch analysiert werden. Anhand von zwei Beispielen aus der Medizin, der Modellierung der oberen Atemwege und des Bronchialbaums, wird das Verfahren vorgeführt. Der generative Bauprozess mittels 3D-Printing wird beschrieben und die Abformung in transparentem Silikon gezeigt. Schließlich werden beispielhaft der Messaufbau und Ergebnisse der Anwendung vorgestellt. Das Verfahren bildet die Grundlage für die Analyse und Berechnung komplexer Innenströmungen und trägt somit zur Verbesserung zahlreicher technischer Anwendungen bei. N2 - Unlike the flow around technical products the interior flow is not understood very well. That’s mainly because of a lack of suitable transparent investigation tunnels that are needed to apply optical methods. The paper proposes a procedure to make precise complex hollow structures from a highly transparent material using masters from generative or Rapid Prototyping processes. Taking two examples from the medical field, the upper human airways and the bronchial tree, the entire process is shown. The 3D Printing build process is illustrated as well as the silicon casting process. Finally the measuring equipment is demonstrated and sample results are given. The process establishes the basis for the investigation and calculation of complex interior flow pattern and therefore contributes to a better understanding and consequently improvement of appropriate technical products. KW - Rapid prototyping KW - Rapid Prototyping KW - Strömungsanalyse KW - Innenströmung KW - Modellkanäle KW - 3D-Printing Y1 - 2005 ER -