TY - JOUR A1 - Staat, Manfred A1 - Ballmann, J. T1 - Computation of impacts on elastic solids by methods of bicharacteristics JF - Computational Mechanics '88 : theory and applications ; proceedings of the International Conference on Computational Engineering Science April 10-14, 1988, Atlanta, GA, USA ; vol. 2 N2 - Shock waves, explosions, impacts or cavitation bubble collapses may generate stress waves in solids causing cracks or unexpected dammage due to focussing, physical nonlinearity or interaction with existing cracks. There is a growing interest in wave propagation, which poses many novel problems to experimentalists and theorists. KW - Bicharakteristikenverfahren KW - Elastizität KW - elastic solids KW - bicharacteristics Y1 - 1988 SP - 1719 EP - 1722 ER - TY - JOUR A1 - Staat, Manfred A1 - Heitzer, M. T1 - Limit and Shakedown Analysis Using a General Purpose Finite Element Code JF - Proceedings of NAFEMS World Congress '97 on Design, Simulation & Optimisation : reliability & applicability of computational methods ; Stuttgart, Germany, 9 - 11 April 1997 Y1 - 1997 SN - 1-87437-620-4 SP - 522 EP - 533 PB - NAFEMS CY - Glasgow ER - TY - JOUR A1 - Thoma, Andreas A1 - Gardi, Alessandro A1 - Fisher, Alex A1 - Braun, Carsten T1 - Improving local path planning for UAV flight in challenging environments by refining cost function weights JF - CEAS Aeronautical Journal N2 - Unmanned Aerial Vehicles (UAV) constantly gain in versatility. However, more reliable path planning algorithms are required until full autonomous UAV operation is possible. This work investigates the algorithm 3DVFH* and analyses its dependency on its cost function weights in 2400 environments. The analysis shows that the 3DVFH* can find a suitable path in every environment. However, a particular type of environment requires a specific choice of cost function weights. For minimal failure, probability interdependencies between the weights of the cost function have to be considered. This dependency reduces the number of control parameters and simplifies the usage of the 3DVFH*. Weights for costs associated with vertical evasion (pitch cost) and vicinity to obstacles (obstacle cost) have the highest influence on the failure probability of the local path planner. Environments with mainly very tall buildings (like large American city centres) require a preference for horizontal avoidance manoeuvres (achieved with high pitch cost weights). In contrast, environments with medium-to-low buildings (like European city centres) benefit from vertical avoidance manoeuvres (achieved with low pitch cost weights). The cost of the vicinity to obstacles also plays an essential role and must be chosen adequately for the environment. Choosing these two weights ideal is sufficient to reduce the failure probability below 10%. KW - Bio-inspired systems KW - Path planning KW - Obstacle avoidance KW - Unmanned aerial vehicles Y1 - 2024 U6 - https://doi.org/10.1007/s13272-024-00741-x SN - 1869-5590 (eISSN) SN - 1869-5582 N1 - Corresponding author: Andreas Thoma PB - Springer CY - Wien ER - TY - JOUR A1 - Thomessen, Karolin A1 - Thoma, Andreas A1 - Braun, Carsten T1 - Bio-inspired altitude changing extension to the 3DVFH* local obstacle avoidance algorithm JF - CEAS Aeronautical Journal N2 - Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely on local sensor information. Similarly, animals need to find feasible paths based on local information about their surroundings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 3DVFH*b-b, reduces this probability from 70.7 to 18.6% in city-like worlds using a strong vertical evasion strategy. Energy consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter combination shows a failure probability of 6.9% in city-like worlds and reduces energy consumption by 28%. Our findings demonstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV. KW - UAV KW - Obstacle avoidance KW - Autonomy KW - Local path planning Y1 - 2023 U6 - https://doi.org/10.1007/s13272-023-00691-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Karolin Thomessen PB - Springer CY - Wien ER - TY - JOUR A1 - Tippkötter, Nils A1 - Roth, Jasmine T1 - Purified Butanol from Lignocellulose – Solvent‐Impregnated Resins for an Integrated Selective Removal JF - Chemie Ingenieur Technik N2 - In traditional microbial biobutanol production, the solvent must be recovered during fermentation process for a sufficient space-time yield. Thermal separation is not feasible due to the boiling point of n-butanol. As an integrated and selective solid-liquid separation alternative, solvent impregnated resins (SIRs) were applied. Two polymeric resins were evaluated and an extractant screening was conducted. Vacuum application with vapor collection in fixed-bed column as bioreactor bypass was successfully implemented as butanol desorption step. In course of further increasing process economics, fermentation with renewable lignocellulosic substrates was conducted using Clostridium acetobutylicum. Utilization of SIR was shown to be a potential strategy for solvent removal from fermentation broth, while application of a bypass column allows for product removal and recovery at once. KW - Biofuel KW - Biorefinery KW - Butanol KW - Clostridium acetobutylicum KW - Lignocellulose Y1 - 2020 U6 - https://doi.org/10.1002/cite.202000200 SN - 1522-2640 N1 - Corresponding author: Nils Tippkötter VL - 92 IS - 11 SP - 1741 EP - 1751 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tix, Julian A1 - Moll, Fabian A1 - Krafft, Simone A1 - Betsch, Matthias A1 - Tippkötter, Nils T1 - Hydrogen production from enzymatic pretreated organic waste with thermotoga neapolitana JF - Energies N2 - Biomass from various types of organic waste was tested for possible use in hydrogen production. The composition consisted of lignified samples, green waste, and kitchen scraps such as fruit and vegetable peels and leftover food. For this purpose, the enzymatic pretreatment of organic waste with a combination of five different hydrolytic enzymes (cellulase, amylase, glucoamylase, pectinase and xylase) was investigated to determine its ability to produce hydrogen (H2) with the hydrolyzate produced here. In course, the anaerobic rod-shaped bacterium T. neapolitana was used for H2 production. First, the enzymes were investigated using different substrates in preliminary experiments. Subsequently, hydrolyses were carried out using different types of organic waste. In the hydrolysis carried out here for 48 h, an increase in glucose concentration of 481% was measured for waste loads containing starch, corresponding to a glucose concentration at the end of hydrolysis of 7.5 g·L−1. In the subsequent set fermentation in serum bottles, a H2 yield of 1.26 mmol H2 was obtained in the overhead space when Terrific Broth Medium with glucose and yeast extract (TBGY medium) was used. When hydrolyzed organic waste was used, even a H2 yield of 1.37 mmol could be achieved in the overhead space. In addition, a dedicated reactor system for the anaerobic fermentation of T. neapolitana to produce H2 was developed. The bioreactor developed here can ferment anaerobically with a very low loss of produced gas. Here, after 24 h, a hydrogen concentration of 83% could be measured in the overhead space. KW - Biological hydrogen KW - Organic waste KW - Dark fermentation KW - Hydrolysis KW - Pretreatment Y1 - 2024 U6 - https://doi.org/10.3390/en17122938 SN - 1996-1073 N1 - Corresponding author: Nils Tippkötter VL - 17 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Vu, Duc-Khoi A1 - Staat, Manfred T1 - An algorithm for shakedown analysis of structure with temperature dependent yield stress N2 - This work is an attempt to answer the question: How to use convex programming in shakedown analysis of structures made of materials with temperature-dependent properties. Based on recently established shakedown theorems and formulations, a dual relationship between upper and lower bounds of the shakedown limit load is found, an algorithmfor shakedown analysis is proposed. While the original problem is neither convex nor concave, the algorithm presented here has the advantage of employing convex programming tools. KW - Einspielen KW - Temperaturabhängigkeit KW - Fließgrenze KW - Shakedown KW - shakedown analysis KW - yield stress Y1 - 2004 ER - TY - JOUR A1 - Welden, Rene A1 - Nagamine Komesu, Cindy A. A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Photoelectrochemical enzymatic penicillin biosensor: A proof-of-concept experiment JF - Electrochemical Science Advances N2 - Photoelectrochemical (PEC) biosensors are a rather novel type of biosensors thatutilizelighttoprovideinformationaboutthecompositionofananalyte,enablinglight-controlled multi-analyte measurements. For enzymatic PEC biosensors,amperometric detection principles are already known in the literature. In con-trast, there is only a little information on H+-ion sensitive PEC biosensors. Inthis work, we demonstrate the detection of H+ions emerged by H+-generatingenzymes, exemplarily demonstrated with penicillinase as a model enzyme on atitanium dioxide photoanode. First, we describe the pH sensitivity of the sensorand study possible photoelectrocatalytic reactions with penicillin. Second, weshow the enzymatic PEC detection of penicillin. KW - enzymatic biosensor KW - penicillin KW - penicillinase KW - photoelectrochemistry KW - titanium dioxide photoanode Y1 - 2021 U6 - https://doi.org/10.1002/elsa.202100131 SN - 2698-5977 N1 - Corresponding author: Michael J. Schöning VL - 2 IS - 4 SP - 1 EP - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wiegner, Jonas A1 - Volker, Hanno A1 - Mainz, Fabian A1 - Backes, Andreas A1 - Loeken, Michael A1 - Hüning, Felix T1 - Energy analysis of a wireless sensor node powered by a Wiegand sensor JF - Journal of Sensors and Sensor Systems (JSSS) N2 - This article describes an Internet of things (IoT) sensing device with a wireless interface which is powered by the energy-harvesting method of the Wiegand effect. The Wiegand effect, in contrast to continuous sources like photovoltaic or thermal harvesters, provides small amounts of energy discontinuously in pulsed mode. To enable an energy-self-sufficient operation of the sensing device with this pulsed energy source, the output energy of the Wiegand generator is maximized. This energy is used to power up the system and to acquire and process data like position, temperature or other resistively measurable quantities as well as transmit these data via an ultra-low-power ultra-wideband (UWB) data transmitter. A proof-of-concept system was built to prove the feasibility of the approach. The energy consumption of the system during start-up was analysed, traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof of concept, an application prototype was developed. Y1 - 2023 U6 - https://doi.org/10.5194/jsss-12-85-2023 SN - 2194-878X N1 - Corresponding author: Felix Hüning VL - 12 IS - 1 SP - 85 EP - 92 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Zhubanova, Azhar A. A1 - Aknazarov, S. K. A1 - Mansurov, Zulkhair A1 - Digel, Ilya A1 - Kozhalakova, A. A. A1 - Akimbekov, Nuraly S. A1 - O'Heras, Carlos A1 - Tazhibayeva, S. A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - Adsorption of bacterial Lipopolysaccharides and blood plasma proteins on modified carbonized materials N2 - Bacterial lipopolysaccharides (endotoxins) show strong biological effects at very low concentrations in human beings and many animals when entering the blood stream. These include affecting structure and function of organs and cells, changing metabolic functions, raising body temperature, triggering the coagulation cascade, modifying hemodynamics and causing septic shock. Because of this toxicity, the removal of even minute amounts is essential for safe parenteral administration of drugs and also for septic shock patients' care. The absence of a general method for endotoxin removal from liquid interfaces urgently requires finding new methods and materials to overcome this gap. Nanostructured carbonized plant parts is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study was comparative measurement of endotoxin- and blood proteins-related adsorption rate and adsorption capacity for different carboneous materials produced at different temperatures and under different surface modifications. As a main surface modificator, positively cbarged polymer, polyethileneimine (PEl) was used. Activated carbon materials showed good adsorption properties for LPS and some proteins used in the experiments. During the batch experiments, several techniques (dust removal, autoclaving) were used and optimized for improving the material's adsorption behavior. Also, with the results obtained it was possible to differentiate the materials according to their adsorption capacity and kinetic characteristics. Modification of the surface apparently has not affected hemoglobin binding to the adsorbent's surface. Obtained adsorption isotherms can be used as a powerful tool for designing of future column-based setups for blood purification from LPS, which is especially important for septic shock treatment. KW - Kohlenstofffaser KW - Lipopolysaccharide KW - nanostrukturierte carbonisierte Pflanzenteile KW - lipopolysaccharides KW - nanostructured carbonized plant parts Y1 - 2010 ER -