TY - JOUR A1 - Tippkötter, Nils A1 - Roikaew, Wipa A1 - Ulber, Roland A1 - Hoffmann, Alexander A1 - Denzler, Hans-Jörg A1 - Buchholz, Heinrich T1 - Paracoccus denitrificans for the effluent recycling during continuous denitrification of liquid food JF - Biotechnology Progress N2 - Nitrate is an undesirable component of several foods. A typical case of contamination with high nitrate contents is whey concentrate, containing nitrate in concentrations up to 25 l. The microbiological removal of nitrate by Paracoccus denitrificans under formation of harmless nitrogen in combination with a cell retention reactor is described here. Focus lies on the resource-conserving design of a microbal denitrification process. Two methods are compared. The application of polyvinyl alcohol-immobilized cells, which can be applied several times in whey feed, is compared with the implementation of a two step denitrification system. First, the whey concentrate's nitrate is removed by ion exchange and subsequently the eluent regenerated by microorganisms under their retention by crossflow filtration. Nitrite and nitrate concentrations were determined by reflectometric color measurement with a commercially available Reflectoquant® device. Correction factors for these media had to be determined. During the pilot development, bioreactors from 4 to 250 mg·L-1 and crossflow units with membrane areas from 0.02 to 0.80 m2 were examined. Based on the results of the pilot plants, a scaling for the exemplary process of denitrifying 1,000 tons per day is discussed. Y1 - 2010 U6 - http://dx.doi.org/10.1002/btpr.384 SN - 8756-7938 VL - 26 IS - 3 SP - 756 EP - 762 PB - Wiley CY - Hoboken, NJ ER - TY - CHAP A1 - Bitz, Andreas A1 - Kraff, O. A1 - Orzada, S. A1 - Maderwald, S. A1 - Brote, I. A1 - Ladd, M. T1 - Experimental and Numerical Assessment of RF Safety of Transmit Coils at 7 Tesla T2 - ISMRM workshop on MR safety 2010 : RF heating of the human in MRI : workshop series. The Washington County Historic Courthouse, Stillwater, Minnesota, USA, 15 - 17 October 2010 Y1 - 2010 SN - 978-1-62276-088-6 SP - 195 ER - TY - JOUR A1 - Schlamann, Marc A1 - Yoon, Min-Suk A1 - Maderwald, Stefan A1 - Pietrzyk, Thomas A1 - Bitz, Andreas A1 - Gerwig, Marcus A1 - Forsting, Michael A1 - Ladd, Susanne C. A1 - Ladd, Mark E. A1 - Kastrup, Oliver T1 - Short term effects of magnetic resonance imaging on excitability of the motor cortex at 1.5T and 7T JF - Academic Radiology N2 - Rationale and Objectives The increasing spread of high-field and ultra-high-field magnetic resonance imaging (MRI) scanners has encouraged new discussion of the safety aspects of MRI. Few studies have been published on possible cognitive effects of MRI examinations. The aim of this study was to examine whether changes are measurable after MRI examinations at 1.5 and 7 T by means of transcranial magnetic stimulation (TMS). Materials and Methods TMS was performed in 12 healthy, right-handed male volunteers. First the individual motor threshold was specified, and then the cortical silent period (SP) was measured. Subsequently, the volunteers were exposed to the 1.5-T MRI scanner for 63 minutes using standard sequences. The MRI examination was immediately followed by another TMS session. Fifteen minutes later, TMS was repeated. Four weeks later, the complete setting was repeated using a 7-T scanner. Control conditions included lying in the 1.5-T scanner for 63 minutes without scanning and lying in a separate room for 63 minutes. TMS was performed in the same way in each case. For statistical analysis, Wilcoxon's rank test was performed. Results Immediately after MRI exposure, the SP was highly significantly prolonged in all 12 subjects at 1.5 and 7 T. The motor threshold was significantly increased. Fifteen minutes after the examination, the measured value tended toward normal again. Control conditions revealed no significant differences. Conclusion MRI examinations lead to a transient and highly significant alteration in cortical excitability. This effect does not seem to depend on the strength of the static magnetic field. Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.acra.2009.10.004 SN - 1076-6332 VL - 17 IS - 3 SP - 277 EP - 281 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schlamann, Marc A1 - Voigt, Melanie A. A1 - Maderwald, Stefan A1 - Bitz, Andreas A1 - Kraff, Oliver A1 - Ladd, Susanne C. A1 - Ladd, Mark E. A1 - Forsting, Michael A1 - Wilhelm, Hans T1 - Exposure to high-field MRI does not affect cognitive function JF - Journal of Magnetic Resonance Imaging N2 - Purpose To assess potential cognitive deficits under the influence of static magnetic fields at various field strengths some studies already exist. These studies were not focused on attention as the most vulnerable cognitive function. Additionally, mostly no magnetic resonance imaging (MRI) sequences were performed. Materials and Methods In all, 25 right-handed men were enrolled in this study. All subjects underwent one MRI examination of 63 minutes at 1.5 T and one at 7 T within an interval of 10 to 30 days. The order of the examinations was randomized. Subjects were referred to six standardized neuropsychological tests strictly focused on attention immediately before and after each MRI examination. Differences in neuropsychological variables between the timepoints before and after each MRI examination were assessed and P-values were calculated Results Only six subtests revealed significant differences between pre- and post-MRI. In these tests the subjects achieved better results in post-MRI testing than in pre-MRI testing (P = 0.013–0.032). The other tests revealed no significant results. Conclusion The improvement in post-MRI testing is only explicable as a result of learning effects. MRI examinations, even in ultrahigh-field scanners, do not seem to have any persisting influence on the attention networks of human cognition immediately after exposure. Y1 - 2010 U6 - http://dx.doi.org/10.1002/jmri.22065 SN - 1522-2586 VL - 31 IS - 5 SP - 1061 EP - 1066 PB - Wiley-Liss CY - New York ER - TY - JOUR A1 - Kraff, Oliver A1 - Bitz, Andreas A1 - Dammann, Philipp A1 - Ladd, Susanne C. A1 - Ladd, Mark E. A1 - Quick, Harald H. T1 - An eight-channel transmit/receive multipurpose coil for musculoskeletal MR imaging at 7 T JF - Medical Physics N2 - Purpose: MRI plays a leading diagnostic role in assessing the musculoskeletal (MSK) system and is well established for most questions at clinically used field strengths (up to 3 T). However, there are still limitations in imaging early stages of cartilage degeneration, very fine tendons and ligaments, or in locating nerve lesions, for example. 7 T MRI of the knee has already received increasing attention in the current published literature, but there is a strong need to develop new radiofrequency (RF) coils to assess more regions of the MSK system. In this work, an eight-channel transmit/receive RF array was built as a multipurpose coil for imaging some of the thus far neglected regions. An extensive coil characterization protocol and first in vivo results of the human wrist, shoulder, elbow, knee, and ankle imaged at 7 T will be presented. Methods: Eight surface loop coils with a dimension ofurn:x-wiley:00942405:media:mp7176:mp7176-math-0001 were machined from FR4 circuit board material. To facilitate easy positioning, two coil clusters, each with four loop elements, were combined to one RF transmit/receive array. An overlapped and shifted arrangement of the coil elements was chosen to reduce the mutual inductance between neighboring coils. A phantom made of body-simulating liquid was used for tuning and matching on the bench. Afterward, the S-parameters were verified on a human wrist, elbow, and shoulder. For safety validation, a detailed compliance test was performed including full wave simulations of the RF field distribution and the corresponding specific absorption rate (SAR) for all joints. In vivo images of four volunteers were assessed with gradient echo and spin echo sequences modified to obtain optimal image contrast, full anatomic coverage, and the highest spatial resolution within a reasonable acquisition time. The performance of the RF coil was additionally evaluated by in vivo B1 mapping. Results: A comparison of B1 per unit power, flip angle distribution, and anatomic images showed a fairly homogeneous excitation for the smaller joints (elbow, wrist, and ankle), while for the larger joints, the shoulder and especially the knee, B1 inhomogeneities and limited penetration depth were more pronounced. However, the greater part of the shoulder joint could be imaged.In vivo images rendered very fine anatomic details such as fascicles of the median nerve and the branching of the nerve bundles. High-resolution images of cartilage, labrum, and tendons could be acquired. Additionally, turbo spin echo (TSE) and inversion recovery sequences performed very well. Conclusions: This study demonstrates that the concept of two four-channel transmit/receive RF arrays can be used as a multipurpose coil for high-resolutionin vivo MR imaging of the musculoskeletal system at 7 T. Not only gradient echo but also typical clinical and SAR-intensive sequences such as STIR and TSE performed well. Imaging of small structures and peripheral nerves could in particular benefit from this technique. Y1 - 2010 U6 - http://dx.doi.org/10.1118/1.3517176 SN - 2473-4209 VL - 37 IS - 12 SP - 6368 EP - 6376 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Orzada, Stephan A1 - Maderwald, Stefan A1 - Poser, Benedikt Andreas A1 - Bitz, Andreas A1 - Quick, Harald H. A1 - Ladd, Mark E. T1 - RF excitation using time interleaved acquisition of modes (TIAMO) to address B1 inhomogeneity in high-field MRI JF - Magnetic Resonance in Medicine N2 - As the field strength and, therefore, the operational frequency in MRI is increased, the wavelength approaches the size of the human head/body, resulting in wave effects, which cause signal decreases and dropouts. Several multichannel approaches have been proposed to try to tackle these problems, including RF shimming, where each element in an array is driven by its own amplifier and modulated with a certain (constant) amplitude and phase relative to the other elements, and Transmit SENSE, where spatially tailored RF pulses are used. In this article, a relatively inexpensive and easy to use imaging scheme for 7 Tesla imaging is proposed to mitigate signal voids due to B1 field inhomogeneity. Two time-interleaved images are acquired using a different excitation mode for each. By forming virtual receive elements, both images are reconstructed together using GRAPPA to achieve a more homogeneous image, with only small SNR and SAR penalty in head and body imaging at 7 Tesla. Y1 - 2010 U6 - http://dx.doi.org/10.1002/mrm.22527 SN - 1522-2594 VL - 64 IS - 2 SP - 327 EP - 333 PB - Wiley-Liss CY - New York ER - TY - CHAP A1 - Abel, Thomas A1 - Bonin, Dominik A1 - Albracht, Kirsten A1 - Zeller, Sebastian A1 - Brüggemann, Gert-Peter A1 - Burkett, Brendan A1 - Strüder, Heiko K. T1 - Kinematic profile of the elite handcyclist T2 - 28th International Conference on Biomechanics in Sports, Marquette, Michigan, USA, July 19 – 23, 2010 Y1 - 2017 SN - 1999-4168 SP - 140 EP - 141 ER - TY - THES A1 - Albracht, Kirsten T1 - Influence of mechanical properties of the leg extensor muscletendon units on running economy Y1 - 2010 N1 - Cologne, German Sport Univ., Diss., 2010 PB - Deutsche Sporthochschule Köln CY - Köln ER - TY - JOUR A1 - Aggeloussis, Nickos A1 - Giannakou, Erasmia A1 - Albracht, Kirsten A1 - Arampatzis, Adamantios T1 - Reproducibility of fascicle length and pennation angle of gastrocnemius medialis in human gait in vivo JF - Gait and Posture N2 - The purpose of the current study was to examine the reproducibility of fascicle length and pennation angle of gastrocnemius medialis while human walking. To the best of our knowledge, this is the first study of the reproducibility of fascicle length and pennation angle of gastrocnemius medialis in vivo during human gait. Twelve males performed 10 gait trials on a treadmill, in 2 separate days. B-mode ultrasonography, with the ultrasound probe firmly adjusted in the transverse and frontal planes using a special cast, was used to measure the fascicle length and the pennation angle of the gastrocnemius medialis (GM). A Vicon 624 system with three cameras operating at 120 Hz was also used to record the ankle and knee joint angles. The results showed that measurements of fascicle length and pennation angle showed high reproducibility during the gait cycle, both within the same day and between different days. Moreover, the root mean square differences between the repeated waveforms of both variables were very small, compared with their ranges (fascicle length: RMS = ∼3 mm, range: 38–63 mm; pennation angle: RMS = ∼1.5°, range: 22–32°). However, their reproducibility was lower compared to the joint angles. It was found that representative data have to be derived by a wide number of gait trials (fascicle length ∼six trials, pennation angle more than 10 trials), to assure the reliability of the fascicle length and pennation angle in human gait. Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.gaitpost.2009.08.249 SN - 0966-6362 VL - 31 IS - 1 SP - 73 EP - 77 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Arampatzis, Adamantios A1 - Peper, Andreas A1 - Bierbaum, Stefanie A1 - Albracht, Kirsten T1 - Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain JF - Journal of Biomechanics N2 - The purpose of the current study in combination with our previous published data (Arampatzis et al., 2007) was to examine the effects of a controlled modulation of strain magnitude and strain frequency applied to the Achilles tendon on the plasticity of tendon mechanical and morphological properties. Eleven male adults (23.9±2.2 yr) participated in the study. The participants exercised one leg at low magnitude tendon strain (2.97±0.47%), and the other leg at high tendon strain magnitude (4.72±1.08%) of similar frequency (0.5 Hz, 1 s loading, 1 s relaxation) and exercise volume (integral of the plantar flexion moment over time) for 14 weeks, 4 days per week, 5 sets per session. The exercise volume was similar to the intervention of our earlier study (0.17 Hz frequency; 3 s loading, 3 s relaxation) allowing a direct comparison of the results. Before and after the intervention ankle joint moment has been measured by a dynamometer, tendon–aponeurosis elongation by ultrasound and cross-sectional area of the Achilles tendon by magnet resonance images (MRI). We found a decrease in strain at a given tendon force, an increase in tendon–aponeurosis stiffness and tendon elastic modulus of the Achilles tendon only in the leg exercised at high strain magnitude. The cross-sectional area (CSA) of the Achilles tendon did not show any statistically significant (P>0.05) differences to the pre-exercise values in both legs. The results indicate a superior improvement in tendon properties (stiffness, elastic modulus and CSA) at the low frequency (0.17 Hz) compared to the high strain frequency (0.5 Hz) protocol. These findings provide evidence that the strain magnitude applied to the Achilles tendon should exceed the value, which occurs during habitual activities to trigger adaptational effects and that higher tendon strain duration per contraction leads to superior tendon adaptational responses. Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.jbiomech.2010.08.014 SN - 0021-9290 VL - 43 IS - 16 SP - 3073 EP - 3079 PB - Elsevier CY - Amsterdam ER -