TY - CHAP A1 - Gömmel, A. A1 - Butenweg, Christoph A1 - Kob, M. T1 - A fluid-structure interaction model of vocal fold oscillation T2 - 5th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2007 N2 - Since fluid-structure interaction within the finite-element method is state of the art in many engineering fields, this method is used in voice analysis. A quasi two-dimensional model of the vocal folds including the ventricular folds is presented. First results of self-sustained vocal fold oscillation are presented and possibilities as well as limitations are discussed. KW - finite element method KW - fluid structure interaction KW - vocal fold oscillation Y1 - 2007 SN - 978-888453674-7 N1 - 5th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2007; Florence; Italy; 13 December 2007 through 15 December 2007 SP - 127 EP - 128 ER - TY - CHAP A1 - Lu, S. A1 - Beyer, K. A1 - Bosiljkov, V. A1 - Butenweg, Christoph A1 - D’Ayala, D. A1 - Degee, H. A1 - Gams, M. A1 - Klouda, J. A1 - Lagomarsino, S. A1 - Penna, A. A1 - Mojsilovic, N. A1 - da Porto, F. A1 - Sorrentino, L. A1 - Vintzileou, E. ED - Modena, Claudio ED - da Porto, F. ED - Valluzzi, M.R. T1 - Next generation of Eurocode 8, masonry chapter T2 - Brick and Block Masonry Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016 N2 - This paper describes the procedure on the evaluation of the masonry chapter for the next generation of Eurocode 8, the European Standard for earthquake-resistant design. In CEN, TC 250/SC8, working group WG 1 has been established to support the subcommittee on the topic of masonry on both design of new structures (EN1998-1) and assessment of existing structures (EN1998-3). The aim is to elaborate suggestions for amendments which fit the current state of the art in masonry and earthquake-resistant design. Focus will be on modelling, simplified methods, linear-analysis (q-values, overstrength-values), nonlinear procedures, out-of-plane design as well as on clearer definition of limit states. Beside these, topics related to general material properties, reinforced masonry, confined masonry, mixed structures and non-structural infills will be covered too. This paper presents the preliminary work and results up to the submission date. Y1 - 2016 SN - 978-1-138-02999-6 (Print) SN - 9781315374963 (E-Book) SP - 695 EP - 700 PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Gömmel, Andreas A1 - Frauenrath, Tobias A1 - Otten, Mario A1 - Niendorf, Thoralf A1 - Butenweg, Christoph ED - Möser, Michael ED - Schulte-Fortkamp, Brgitte ED - Ochmann, Martin T1 - In-vivo measurements of vocal fold geometry using Magnetic Resonance Imaging T2 - Fortschritte der Akustik - DAGA 2010 36. Jahrestagung für Akustik, 15. bis 18. März 2010 in Berlin Y1 - 2010 SN - 978-3-9808659-8-2 PB - Deutsche Gesellschaft für Akustik CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Pavese, Alberto A1 - Lanese, Igor A1 - Hoffmeister, Benno A1 - Pinkawa, Marius A1 - Vulcu, Mihai-Cristian A1 - Bursi, Oreste A1 - Nardin, Chiara A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca A1 - Fragiadakis, Michalis A1 - Weber, Felix A1 - Huber, Peter A1 - Renault, Philippe A1 - Gündel, Max A1 - Dyke, Shirley A1 - Ciucci, M. A1 - Marino, A. T1 - Seismic performance of multi-component systems in special risk industrial facilities T2 - 17. World Conference on Earthquake Engineering , Sendai , Japan , 17WCEE , 2021-09-27 - 2021-10-02 N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 ER - TY - CHAP A1 - Taddei, Francesca A1 - Lozana, Lara A1 - Michel, Philipp A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Papadrakakis, Manolis ED - Papadrakakis, M. ED - Papadopoulos, V. ED - Plevris, V. T1 - Practical recommendations for the foundation design of onshore wind turbines including soil-structure interaction T2 - 5th International Conference on Computational Methods in Structural , Hersonissos, Greece Dynamics and Earthquake Engineering, COMPDYN 2015, 25.05.2015-27.05.2015, Hersonissos, Greece. Y1 - 2015 ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration mitigation of wind turbine towers by a new semiactive Tuned Liquid Column Damper T2 - 6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain Y1 - 2014 ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Vibration control of slender structures by semi-active tuned liquid column dampers T2 - Conference of the ASCE Engineering Mechanics Institute , Evanston, IL , USA , EMI 2013 , 2013-08-04 - 2013-08-07 Y1 - 2013 N1 - http://www.emi2013.northwestern.edu/openconf/modules/request.php?module=oc_program&action=view.php&a=&id=213&type=1 Seite kann nicht gefunden werden. ER - TY - CHAP A1 - Butenweg, Christoph A1 - Norda, Hannah ED - Adam, Christoph ED - Heuer, Rudolf ED - Lenhardt, Wolfgang ED - Schranz, Christian T1 - Nonlinear analysis of masonry structures according to Eurocode 8 T2 - Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) Y1 - 2013 SN - 978-3-902749-04-8 N1 - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, Paper No. 523 13. D-A-CH Tagung ; Vienna, Austria, 29. - 30. August 2013 http://hdl.handle.net/20.500.12188/15830 (Error - Cannot Connect to Server) ER - TY - CHAP A1 - Churilov, Sergej A1 - Dumova-Jovanoska, Elena A1 - Butenweg, Christoph ED - Adam, Christoph ED - Heuer, Rudolf ED - Lenhardt, Wolfgang ED - Schranz, Christian T1 - Seismic verification of existing masonry buildings and strengthening with reinforced concrete jackets T2 - Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) N2 - A methodology for assessment, seismic verification and strengthening of existing masonry buildings is presented in this paper. The verification is performed using a calculation model calibrated with the results from ambient vibration measurements. The calibrated model serves as an input for a deformation-based verification procedure based on the Capacity Spectrum Method (CSM). The bearing capacity of the building is calculated from experimental capacity curves of the individual walls idealized with bilinear elastic-perfectly plastic curves. The experimental capacity curves were obtained from in-plane cyclic loading tests on unreinforced and strengthened masonry walls with reinforced concrete jackets. The seismic action is compared with the load-bearing capacity of the building considering non-linear material behavior with its post-peak capacity. The application of the CSM to masonry buildings and the influence of a traditional strengthening method are demonstrated on the example of a public school building in Skopje, Macedonia. Y1 - 2013 SN - 978-3-902749-04-8 N1 - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, Paper No. 523 13. D-A-CH Tagung ; Vienna, Austria, 29. - 30. August 2013 http://hdl.handle.net/20.500.12188/15830 (Error - Cannot Connect to Server) ER - TY - CHAP A1 - Riga, Evi A1 - Pitilakis, Kyriazis A1 - Butenweg, Christoph A1 - Apostolaki, Stefania A1 - Karatzetzou, Anna ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Investigating the impact of the new European Seismic Hazard Model ESHM20 on the seismic design and safety control of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - The seismic performance and safety of major European industrial facilities has a global interest for Europe, its citizens and economy. A potential major disaster at an industrial site could affect several countries, probably far beyond the country where it is located. However, the seismic design and safety assessment of these facilities is practically based on national, often outdated seismic hazard assessment studies, due to many reasons, including the absence of a reliable, commonly developed seismic hazard model for whole Europe. This important gap is no more existing, as the 2020 European Seismic Hazard Model ESHM20 was released in December 2021. In this paper we investigate the expected impact of the adoption of ESHM20 on the seismic demand for industrial facilities, through the comparison of the ESHM20 probabilistic hazard at the sites where industrial facilities are located with the respective national and European regulations. The goal of this preliminary work in the framework of Working Group 13 of the European Association for Earthquake Engineering (EAEE), is to identify potential inadequacies in the design and safety control of existing industrial facilities and to highlight the expected impact of the adoption of the new European Seismic Hazard Model on the design of new industrial facilities and the safety assessment of existing ones. KW - ESHM20, industrial facilities KW - seismic hazard KW - seismic design KW - safety control Y1 - 2022 SN - 978-973-100-533-1 SP - 3261 EP - 3270 ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Gams, Matija A1 - Klinkel, Sven ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Effects of prior in-plane damage on out-of-plane response of masonry infills with openings T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - Masonry infill walls are the most traditional enclosure system that is still widely used in RC frame buildings all over the world, particularly in seismic active regions. Although infill walls are usually neglected in seismic design, during an earthquake event they are subjected to in-plane and out-of-plane forces that can act separately or simultaneously. Since observations of damage to buildings after recent earthquakes showed detrimental effects of in-plane and out-of-plane load interaction on infill walls, the number of studies that focus on influence of in-plane damage on out-of-plane response has significantly increased. However, most of the xperimental campaigns have considered only solid infills and there is a lack of combined in-plane and out-of-plane experimental tests on masonry infills with openings, although windows and doors strongly affect seismic performance. In this paper, two types of experimental tests on infills with window openings are presented. The first is a pure out-of-plane test and the second one is a sequential in-plane and out-of-plane test aimed at investigating the effects of existing in-plane damage on outof-plane response. Additionally, findings from two tests with similar load procedure that were carried out on fully infilled RC frames in the scope of the same project are used for comparison. Test results clearly show that window opening increased vulnerability of infills to combined seismic actions and that prevention of damage in infills with openings is of the utmost importance for seismic safety. KW - Seismic loading KW - In-plane load KW - Out-of-plane load KW - Interaction KW - Window opening Y1 - 2022 SN - 978-973-100-533-1 SP - 2747 EP - 2756 ER - TY - CHAP A1 - Morandi, Paolo A1 - Butenweg, Christoph A1 - Breis, Khaled A1 - Beyer, Katrin A1 - Magenes, Guido ED - Arion, Christian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Behaviour factor q for the seismic design of URM buildings T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - Recent earthquakes showed that low-rise URM buildings following codecompliant seismic design and details behaved in general very well without substantial damages. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. Values of q-factors are derived for low-rise URM buildings with rigid diaphragms, with reference to modern structural configurations realized in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0 to 3.0 are proposed. KW - unreinforced masonry buildings KW - modern constructions KW - seismic design KW - linear elastic analysis; KW - behaviour factor q Y1 - 2022 SN - 978-973-100-533-1 SP - 1184 EP - 1194 ER - TY - CHAP A1 - Tomić, Igor A1 - Penna, Andrea A1 - DeJong, Matthew A1 - Butenweg, Christoph A1 - Correia, António A. A1 - Candeias, Paulo X. A1 - Senaldi, Ilaria A1 - Guerrini, Gabriele A1 - Malomo, Daniele A1 - Beyer, Katrin T1 - Seismic testing of adjacent interacting masonry structures T2 - 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020) N2 - In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the façades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the façade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25%, 50%, 75% and 100% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa KW - Historical centres KW - Stone masonry KW - Adjacent buildings KW - Shake table test Y1 - 2020 U6 - http://dx.doi.org/10.23967/sahc.2021.234 N1 - Wednesday, 16 September, 2020 to Friday, 18 September, 2020, Barcelona. SP - 1 EP - 12 ER - TY - CHAP A1 - Tomic, Igor A1 - Penna, Andrea A1 - DeJong, Matthew A1 - Butenweg, Christoph A1 - Senaldi, Ilaria A1 - Guerrini, Gabriele A1 - Malomo, Daniele A1 - Beyer, Katrin T1 - Blind predictions of shake table testing of aggregate masonry buildings T2 - 17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021. N2 - In many historical centers in Europe, stone masonry is part of building aggregates, which developed when the layout of the city or village was densified. The analysis of such building aggregates is very challenging and modelling guidelines missing. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The SERA project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures) provides such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. With the aim to advance the modelling of unreinforced masonry aggregates, a blind prediction competition is organized before the experimental campaign. Each group has been provided a complete set of construction drawings, material properties, testing sequence and the list of measurements to be reported. The applied modelling approaches span from equivalent frame models to Finite Element models using shell elements and discrete element models with solid elements. This paper compares the first entries, regarding the modelling approaches, results in terms of base shear, roof displacements, interface openings, and the failure modes. KW - Historical centres KW - Stone masonry KW - Adjacent buildings KW - Shake table test KW - Blind prediction competition Y1 - 2020 N1 - Die Konferenz war ursprünglich für den 13-18 September 2020 angesetzt. ER - TY - CHAP A1 - Šakić, Bogdan A1 - Milijaš, Aleksa A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Influence of prior in-plane damage on the out-of-plane response of non-load bearing unreinforced masonry walls under seismic load T2 - 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Reinforced concrete frames with masonry infill walls are popular form of construction all over the world as well in seismic regions. While severe earthquakes can cause high level of damage of both reinforced concrete and masonry infills, earthquakes of lower to medium intensity some-times can cause significant level of damage of masonry infill walls. Especially important is the level of damage of face loaded infill masonry walls (out-of-plane direction) as out-of-plane load cannot only bring high level of damage to the wall, it can also be life-threating for the people near the wall. The response in out-of-plane direction directly depends on the prior in-plane damage, as previous investigation shown that it decreases resistance capacity of the in-fills. Behaviour of infill masonry walls with and without prior in-plane load is investigated in the experimental campaign and the results are presented in this paper. These results are later compared with analytical approaches for the out-of-plane resistance from the literature. Conclusions based on the experimental campaign on the influence of prior in-plane damage on the out-of-plane response of infill walls are compared with the conclusions from other authors who investigated the same problematic. KW - Earthquake Engineering KW - Unreinforced masonry walls KW - Out-of-plane load KW - In- plane damage KW - Out-of-plane failure Y1 - 2021 SN - 9786188507258 U6 - http://dx.doi.org/10.7712/120121.8527.18913 SN - 2623-3347 N1 - COMPDYN 2021 28-30 June 2021, Streamed from Athens, Greece SP - 808 EP - 828 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Experimental investigation of behaviour of masonry infilled RC frames under out-of-plane loading T2 - 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Masonry infills are commonly used as exterior or interior walls in reinforced concrete (RC) frame structures and they can be encountered all over the world, including earthquake prone regions. Since the middle of the 20th century the behaviour of these non-structural elements under seismic loading has been studied in numerous experimental campaigns. However, most of the studies were carried out by means of in-plane tests, while there is a lack of out-of-plane experimental investigations. In this paper, the out-of-plane tests carried out on full scale masonry infilled frames are described. The results of the out-of-plane tests are presented in terms of force-displacement curves and measured out-of-plane displacements. Finally, the reliability of existing analytical approaches developed to estimate the out-of-plane strength of masonry infills is examined on presented experimental results. KW - Seismic loading KW - Masonry infill KW - Out-of-plane load KW - Out-of-plane strength Y1 - 2021 SN - 978-618-85072-5-8 U6 - http://dx.doi.org/10.7712/120121.8528.18914 SN - 2623-3347 N1 - COMPDYN 2021 28-30 June 2021, Streamed from Athens, Greece SP - 829 EP - 846 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Butenweg, Christoph ED - Kuzmanović, Vladan ED - Ignjatović, Ivan T1 - Integrated approach for monitoring and management of buildings with digital building models and modern sensor technologies T2 - Civil Engineering 2021 – Achievements and Visions: Proceedings of the International Conferenecs celebrating 175th Anniversary of the Faculty of Civil Engineering, University of Belgrade, October 25 – 26, 2021 Belgrade, Serbia Y1 - 2021 PB - University of Belgrade CY - Belgrade ER - TY - CHAP A1 - Milkova, Kristina A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Region-sensitive comprehensive procedure for determination of seismic fragility curves T2 - 1st Croatian Conference on Earthquake Engineering 1CroCEE 22-24 March 2021 Zagreb, Croatia N2 - Seismic vulnerability estimation of existing structures is unquestionably interesting topic of high priority, particularly after earthquake events. Having in mind the vast number of old masonry buildings in North Macedonia serving as public institutions, it is evident that the structural assessment of these buildings is an issue of great importance. In this paper, a comprehensive methodology for the development of seismic fragility curves of existing masonry buildings is presented. A scenario – based method that incorporates the knowledge of the tectonic style of the considered region, the active fault characterization, the earth crust model and the historical seismicity (determined via the Neo Deterministic approach) is used for calculation of the necessary response spectra. The capacity of the investigated masonry buildings has been determined by using nonlinear static analysis. MINEA software (SDA Engineering) is used for verification of the structural safety of the structures Performance point, obtained from the intersection of the capacity of the building and the spectra used, is selected as a response parameter. The thresholds of the spectral displacement are obtained by splitting the capacity curve into five parts, utilizing empirical formulas which are represented as a function of yield displacement and ultimate displacement. As a result, four levels of damage limit states are determined. A maximum likelihood estimation procedure for the process of fragility curves determination is noted as a final step in the proposed procedure. As a result, region specific series of vulnerability curves for structures are defined. KW - seismic risk KW - seismic vulnerability KW - fragility curves KW - masonry structures Y1 - 2021 U6 - http://dx.doi.org/10.5592/CO/1CroCEE.2021.158 SP - 121 EP - 128 PB - University of Zagreb CY - Zagreb ER - TY - CHAP A1 - Balaskas, Georgios A1 - Hoffmeister, Benno A1 - Butenweg, Christoph A1 - Pilz, Marco A1 - Bauer, Anna ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Earthquake early warning and response system based on intelligent seismic and monitoring sensors embedded in a communication platform and coupled with BIM models T2 - 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - This paper describes the concept of an innovative, interdisciplinary, user-oriented earthquake warning and rapid response system coupled with a structural health monitoring system (SHM), capable to detect structural damages in real time. The novel system is based on interconnected decentralized seismic and structural health monitoring sensors. It is developed and will be exemplarily applied on critical infrastructures in Lower Rhine Region, in particular on a road bridge and within a chemical industrial facility. A communication network is responsible to exchange information between sensors and forward warnings and status reports about infrastructures’health condition to the concerned recipients (e.g., facility operators, local authorities). Safety measures such as emergency shutdowns are activated to mitigate structural damages and damage propagation. Local monitoring systems of the infrastructures are integrated in BIM models. The visualization of sensor data and the graphic representation of the detected damages provide spatial content to sensors data and serve as a useful and effective tool for the decision-making processes after an earthquake in the region under consideration. KW - early warning and response system KW - interconnected sensor systems KW - seismic structural damage detection via SHM KW - integration SHM in BIM Y1 - 2021 SN - 978-618-85072-5-8 U6 - http://dx.doi.org/10.7712/120121.8539.18855 SN - 2623-3347 N1 - COMPDYN 2021 28-30 June 2021, Streamed from Athens, Greece SP - 987 EP - 998 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Nardin, Chiara A1 - Lanese, Igor A1 - Pavese, Alberto A1 - Marinković, Marko A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca T1 - Experimental investigation on the seismic performance of a multi-component system for major-hazard industrial facilities T2 - Pressure Vessels & Piping Virtual Conference July 13-15, 2021 N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behaviour of the test structure and of its relative several installations is investigated. Furthermore, both process components and primary structure interactions are considered and analyzed. Several PGA-scaled artificial ground motions are applied to study the seismic response at different levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the experimental setup of the investigated structure and installations, selected measurement data and describes the obtained damage. Furthermore, important findings for the definition of performance limits, the effectiveness of floor response spectra in industrial facilities will be presented and discussed. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 SN - 9780791885352 U6 - http://dx.doi.org/10.1115/PVP2021-61696 PB - American Society of Mechanical Engineers (ASME) CY - New York ER - TY - CHAP A1 - Milkova, Kristina A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Methodology for development of seismic vulnerability curve for existing unreinforced Masonry buildings T2 - 17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021. N2 - Seismic behavior of an existing unreinforced masonry building built pre-modern code, located in the City of Ohrid, Republic of North Macedonia has been investigated in this paper. The analyzed school building is selected as an archetype in an ongoing project named “Seismic vulnerability assessment of existing masonry structures in Republic of North Macedonia (SeismoWall)”. Two independent segments were included in this research: Seismic hazard assessment by creating a cite specific response spectra and Seismic vulnerability definition by creating a region - specific series of vulnerability curves for the chosen building topology. A reliable Seismic Hazard Assessment for a selected region is a crucial point for performing a seismic risk analysis of a characteristic building class. In that manner, a scenario – based method that incorporates together the knowledge of tectonic style of the considered region, the active fault characterization, the earth crust model and the historical seismicity named Neo Deterministic approach is used for calculation of the response spectra for the location of the building. Variations of the rupturing process are taken into account in the nucleation point of the rupture, in the rupture velocity pattern and in the istribution of the slip on the fault. The results obtained from the multiple scenarios are obtained as an envelope of the response spectra computed for the cite using the procedure Maximum Credible Seismic Input (MCSI). Capacity of the selected building has been determined by using nonlinear static analysis. MINEA software (SDA Engineering) was used for verification of the structural safety of the chosen unreinforced masonry structure. In the process of optimization of the number of samples, computational cost required in a Monte Carlo simulation is significantly reduced since the simulation is performed on a polynomial response surface function for prediction of the structural response. Performance point, found as the intersection of the capacity of the building and the spectra used, is chosen as a response parameter. Five levels of damage limit states based on the capacity curve of the building are defined in dependency on the yield displacement and the maximum displacement. Maximum likelihood estimation procedure is utilized in the process of vulnerability curves determination. As a result, region specific series of vulnerability curves for the chosen type of masonry structures are defined. The obtained probabilities of exceedance a specific damage states as a result from vulnerability curves are compared with the observed damages happened after the earthquake in July 2017 in the City of Ohrid, North Macedonia. KW - Masonry structures KW - Vulnerability Curves KW - Capacity Curve KW - Neo-Deterministic KW - Seismic Hazard Y1 - 2020 N1 - Die Konferenz war ursprünglich für den 13-18 September 2020 angesetzt. ER - TY - CHAP A1 - Marinković, Marko A1 - Butenweg, Christoph T1 - Out-of-plane behavior of decoupled masonry infills under seismic loading T2 - 17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021. N2 - Masonry is used in many buildings not only for load-bearing walls, but also for non-load-bearing enclosure elements in the form of infill walls. Many studies confirmed that infill walls interact with the surrounding reinforced concrete frame, thus changing dynamic characteristics of the structure. Consequently, masonry infills cannot be neglected in the design process. However, although the relevant standards contain requirements for infill walls, they do not describe how these requirements are to be met concretely. This leads in practice to the fact that the infill walls are neither dimensioned nor constructed correctly. The evidence of this fact is confirmed by the recent earthquakes, which have led to enormous damages, sometimes followed by the total collapse of buildings and loss of human lives. Recently, the increasing effort has been dedicated to the approach of decoupling of masonry infills from the frame elements by introducing the gap in between. This helps in removing the interaction between infills and frame, but raises the question of out-of-plane stability of the panel. This paper presents the results of the experimental campaign showing the out-of-plane behavior of masonry infills decoupled with the system called INODIS (Innovative decoupled infill system), developed within the European project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings). Full scale specimens were subjected to the different loading conditions and combinations of in-plane and out-of-plane loading. Out-of-plane capacity of the masonry infills with the INODIS system is compared with traditionally constructed infills, showing that INODIS system provides reliable out-of-plane connection under various loading conditions. In contrast, traditional infills performed very poor in the case of combined and simultaneously applied in-plane and out-of-plane loading, experiencing brittle behavior under small in-plane drifts followed by high out-of-plane displacements. Decoupled infills with the INODIS system have remained stable under out-of-plane loads, even after reaching high in-plane drifts and being damaged. KW - in-plane KW - out-of-plane KW - INODIS KW - earthquake KW - connection detail Y1 - 2020 N1 - Die Konferenz war ursprünglich für den 13-18 September 2020 angesetzt. ER - TY - CHAP A1 - Michel, Philipp A1 - Alder, Philipp A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Berechnung der Fluid-Struktur-Interaktion für flexibel gelagerte Flüssigkeitstanks T2 - 16. D-A-CH Tagung Erdbebeningenieurwesen & Baudynamik: 26. und 27. September 2019, Universität Innsbruck Y1 - 2019 SN - 978-3-200-06454-6 ER - TY - CHAP A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Papadrakakis, Manolis ED - Fragiadakis, Michalis T1 - Experimental and numerical analysis of RC frames with decoupled masonry infills T2 - 7th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering N2 - Masonry infill walls are commonly used in reinforced concrete (RC) frame structures, also in seismically active areas, although they often experience serious damage during earthquakes. One of the main reasons for their poor behaviour is the connection to the frame, which is usually constructed using mortar. This paper describes the novel solution for infill/frame connection based on application of elastomeric material between them. The system called INODIS (Innovative Decoupled Infill System) has the aim to postpone the activation of infill in in-plane direction and at the same time to provide sufficient out-of-plane support. First, experimental tests on infilled frame specimens are presented and the comparison of the results between traditionally infilled frames and infilled frames with the INODIS system are given. The results are then used for calibration and validation of numerical model, which can be further employed for investigating the influence of some material parameters on the behaviour of infilled frames with the INODIS system. KW - Earthquake KW - In-plane KW - Out-of-plane KW - Isolation KW - Seismic Y1 - 2019 SN - 978-618-82844-5-6 U6 - http://dx.doi.org/10.7712/120119.7088.18845 SN - 2623-3347 N1 - COMPDYN 2019, 24-26 June 2019, Crete, Greece. SP - 2464 EP - 2479 PB - National Technical University of Athens CY - Athen ER - TY - CHAP A1 - Rajan, Sreelakshmy A1 - Kubalski, Thomas A1 - Altay, Okyay A1 - Dalguer, Luis A A1 - Butenweg, Christoph T1 - Multi-dimensional fragility analysis of a RC building with components using response surface method T2 - 24th International Conference on Structural Mechanics in Reactor Technology, Busan, Korea, 20-25 August, 2017 N2 - Conventional fragility curves describe the vulnerability of the main structure under external hazards. However, in complex structures such as nuclear power plants, the safety or the risk depends also on the components associated with a system. The classical fault tree analysis gives an overall view of the failure and contains several subsystems to the main event, however, the interactions in the subsystems are not well represented. In order to represent the interaction of the components, a method suggested by Cimellaro et al. (2006) using multidimensional performance limit state functions to obtain the system fragility curves is adopted. This approach gives the possibility of deriving the cumulative fragility taking into account the interaction of the response of different components. In this paper, this approach is used to evaluate seismic risk of a representative electrical building infrastructure, including the component, of a nuclear power plant. A simplified model of the structure, with nonlinear material behavior is employed for the analysis in Abaqus©. The input variables considered are the material parameters, boundary conditions and the seismic input. The variability of the seismic input is obtained from selected ground motion time histories of spectrum compatible synthetic ccelerograms. Unlike the usual Monte Carlo methods used for the probabilistic analysis of the structure, a computationally effective response surface method is used. This method reduces the computational effort of the calculations by reducing the required number of samples. Y1 - 2017 SN - 9781510856776 SP - 3126 EP - 3135 PB - International Assn for Structural Mechanics in Reactor Technology (IASMiRT) CY - Raleigh, USA ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Kubalski, Thomas A1 - Fehling, Ekkehard A1 - Pfetzing, Thomas A1 - Meyer, Udo ED - Zabel, Volkmar ED - Beinersdorf, Silke T1 - Innovative Ansätze für die seismische Auslegung von Stahlbetonrahmentragwerken mit Ausfachungen aus Ziegelmauerwerk T2 - Vortragsband der 15. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik KW - Stahlbetonrahmen KW - Ausfachungsmauerwerk KW - INSYSME KW - Erdbeben KW - Ziegelmauerwerk Y1 - 2017 SN - 978-3-930108-13-5 SP - 130 EP - 145 PB - Deutsche Gesellschaft für Erdbebeningenieurwesen und Baudynamik (DGEB) e.V. CY - Weimar ER - TY - CHAP A1 - Boesen, Niklas A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Deichsel, Anne A1 - Klinkel, Sven ED - Zabel, Volkmar ED - Beinersdorf, Silke T1 - Untersuchung vorhandenerTragreserven moderner unbewehrter Mauerwerksbauten T2 - Vortragsband der 15. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik Y1 - 2017 SN - 978-3-930108-13-5 N1 - 21.-22. September 2017, Weimar. ISBN laut DNB falsch SP - 408 EP - 418 PB - Deutsche Gesellschaft für Erdbebeningenieurwesen und Baudynamik (DGEB) e.V. CY - Weimar ER - TY - CHAP A1 - Butenweg, Christoph A1 - Meyer, Udo A1 - Fehling, Ekkehard T1 - INSYSME: first activities of the German partners T2 - 9th International Masonry Conference 2014 in Guimaraes, Portugal, 2014 Y1 - 2014 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Rajan, Sreelakshmy T1 - Design and construction techniques of AAC masonry buildings in earthquakes regions T2 - 10 years Xella research in Building Materials : Symposium on the 4th and 5th of September, Potsdam 2014 Y1 - 2014 ER - TY - CHAP A1 - Rosin, Julia A1 - Kubalski, Thomas A1 - Butenweg, Christoph ED - Klinkel, Sven ED - Butenweg, Christoph ED - Lin, Gao ED - Holtschoppen, Britta T1 - Seismic isolation of cylindrical liquid storage tanks T2 - Seismic design of industrial facilities N2 - Seismic excited liquid filled tanks are subjected to extreme loading due to hydrodynamic pressures, which can lead to nonlinear stability failure of the thinwalled cylindrical tanks, as it is known from past earthquakes. A significant reduction of the seismically induced loads can be obtained by the application of base isolation systems, which have to be designed carefully with respect to the modified hydrodynamic behaviour of the tank in interaction with the liquid. For this reason a highly sophisticated fluid-structure interaction model has to be applied for a realistic simulation of the overall dynamic system. In the following, such a model is presented and compared with the results of simplified mathematical models for rigidly supported tanks. Finally, it is examined to what extent a simple mechanical model can represent the behaviour of a base isolated tank in case of seismic excitation Y1 - 2013 SN - 978-3-658-02810-7 SN - 978-3-658-02809-1 SN - 978-3-658-14037-3 U6 - http://dx.doi.org/10.1007/978-3-658-02810-7_36 N1 - International Conference on Seismic Design of Industrial Facilities, Aachen, Germany, 26.-27.09.2013. https://sedif-conference.jimdofree.com/ SP - 429 EP - 440 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Butenweg, Christoph ED - Vacareanu, Radu ED - Ionescu, Constantin T1 - Seismic design and evaluation of industrial facilities T2 - Progresses in European Earthquake Engineering and Seismology. Third European Conference on Earthquake Engineering and Seismology – Bucharest, 2022 N2 - Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage. KW - Industrial facilities KW - Seismic design KW - Tanks KW - EN 1998-4 KW - Structural health monitoring Y1 - 2022 SN - 978-3-031-15103-3 SN - 978-3-031-15106-4 SN - 978-3-031-15104-0 U6 - http://dx.doi.org/10.1007/978-3-031-15104-0 SN - 2524-342X SN - 2524-3438 N1 - Third European Conference on Earthquake Engineering and Seismology. 04-09.09 Bucharest, Romania. SP - 449 EP - 464 PB - Springer CY - Cham ER - TY - CHAP A1 - Mistler, M. A1 - Butenweg, Christoph A1 - Anthoine, A. T1 - Evaluation of the failure criterion for masonry by homogenisation T2 - Proceedings of the Seventh International Conference on Computational Structures Technology : [Lisbon, Portugal, 7 - 9 September 2004] / ed. by B. H. V. Topping and C.A. Mota Soares Y1 - 2004 SN - 0-948749-95-4 U6 - http://dx.doi.org/10.4203/ccp.79.201 PB - Civil-Comp Press CY - Stirling ER - TY - CHAP A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Innovative System for Earthquake Resistant Masonry Infill Walls T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11479 SP - 1 EP - 12 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Fehling, Ekkehard A1 - Pfetzing, Thomas A1 - Kubalski, Thomas T1 - Experimental and Numerical Investigations of Reinforced Concrete Frames with Masonry Infills under Combined In- and Out-of-plane Seismic Loading T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11477 SP - 1 EP - 12 ER - TY - CHAP A1 - Michel, Philipp A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Frequency Dependent Impedance Analysis of the Foundation-Soil-Systems of Onshore Wind Turbines T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11440 SP - 1 EP - 13 ER - TY - CHAP A1 - Schmitt, Timo A1 - Rosin, Julia A1 - Butenweg, Christoph T1 - Seismic Impact And Design Of Buried Pipelines T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 N2 - Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety but also for the maintenance of the supply infrastructure after an earthquake. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. However, the presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, backfill height and synthetic displacement time histories. The interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs and the propagating wave is simulated affecting the pipeline punctually, independently in time and space. Special attention is given to long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which during the earthquake lead to high bending stresses in the cross-section of the pipeline. Finally, an interpretation of the results and recommendations are given for the most critical parameters. Y1 - 2018 N1 - Paper No 10600 SP - 1 EP - 12 ER - TY - CHAP A1 - Milkova, Kristina A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Development of Seismic Vulnerability Curves for Region Specific Masonry Buildings T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10522 SP - 1 EP - 10 ER - TY - CHAP A1 - Anic, Filip A1 - Penava, Davorin A1 - Guljas, Ivica A1 - Sarhosis, Vasilis A1 - Abrahamczyk, Lars A1 - Butenweg, Christoph T1 - The Effect of Openings on Out-of-Plane Capacity of Masonry Infilled Reinforced Concrete Frames T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10168 SP - 1 EP - 11 ER - TY - CHAP A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Boesen, Niklas A1 - Gellert, Christoph T1 - Evaluation of the Seismic Behavior of a Modern URM Building During the 2012 Northern Italy Earthquakes T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 SP - 1 EP - 12 ER - TY - CHAP A1 - Kubalski, T. A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Klinkel, S. T1 - Investigation Of The Seismic Behaviour Of Infill Masonry Using Numerical Modelling Approaches T2 - 16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 N2 - Masonry is a widely spread construction type which is used all over the world for different types of structures. Due to its simple and cheap construction, it is used as non-structural as well as structural element. In frame structures, such as reinforced concrete frames, masonry may be used as infill. While the bare frame itself is able to carry the loads when it comes to seismic events, the infilled frame is not able to warp freely due to the constrained movement. This restraint results in a complex interaction between the infill and the surrounding frame, which may lead to severe damage to the infill as well as the surrounding frame. The interaction is studied in different projects and effective approaches for the description of the behavior are still lacking. Experimental programs are usually quite expensive, while numerical models, once validated, do offer an efficient approach for the investigation of the interaction when horizontally loaded. In order to study the numerous parameters influencing the seismic load bearing behavior, numerical models may be used. Therefore, this contribution presents a numerical approach for the simulation of infill masonry in reinforced concrete frames. Both parts, the surrounding frame as well as the infill are represented by micro modelling approaches to correctly take into account the different types of failure. The adopted numerical model describes the inelastic behavior of the system, as indicated by the obtained results of the overall structural response as well as the formation of damage in the infilled wall. Comparison of the numerical and experimental results highlights the valuable contribution of numerical simulations in the study and design of infilled frames. As damage of the infill masonry may occur in-plane due to the interaction as well as out-of-plane due to the low vertical load, both directions of loading are investigated. Y1 - 2017 N1 - Paper No 3064 SP - 1 EP - 11 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - CHAP A1 - Rosin, J. A1 - Mykoniou, K. A1 - Butenweg, Christoph T1 - Analysis Of Base Isolated Liquid Storage Tanks With 3D Fsi-Analysis As Well As Simplified Approaches T2 - 16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 N2 - Tanks are preferably designed, for cost-saving reasons, as circular, cylindrical, thin-walled shells. In case of seismic excitation, these constructions are highly vulnerable to stability failures. An earthquake-resistant design of rigidly supported tanks for high seismic loading demands, however, uneconomic wall thicknesses. A cost-effective alternative can be provided by base isolation systems. In this paper, a simplified seismic design procedure for base isolated tanks is introduced, by appropriately modifying the standard mechanical model for flexible, rigidly supported tanks. The non-linear behavior of conventional base isolation systems becomes an integral part of a proposed simplified process, which enables the assessment of the reduced hydrodynamic forces acting on the tank walls and the corresponding stress distribution. The impulsive and convective actions of the liquid are taken into account. The validity of this approach is evaluated by employing a non-linear fluid-structure interaction algorithm of finite element method. Special focus is placed on the boundary conditions imposed from the base isolation and the resulting hydrodynamic pressures. Both horizontal and vertical component of ground motion are considered in order to study the principal effects of the base isolation on the pressure distribution of the tank walls. The induced rocking effects associated with elastomeric bearings are discussed. The results manifest that base isolated tanks can be designed for seismic loads by means of the proposed procedure with sufficient accuracy, allowing to dispense with numerically expensive techniques. KW - liquid storage tank KW - seismic isolation KW - elastomeric bearing KW - friction pendulum bearing KW - simplified approach Y1 - 2017 N1 - Paper No 2246 SP - 1 EP - 14 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - CHAP A1 - Rajan, S. A1 - Butenweg, Christoph A1 - Dalguer, L. A. A1 - An, J. H. A1 - Renault, P. A1 - Klinkel, S. T1 - Fragility curves for a three-storey reinforced concrete test structure of the international benchmark SMART 2013 T2 - 16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 Y1 - 2017 N1 - Paper No 2119 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - CHAP A1 - Rajan, Sreelakshmy A1 - Holtschoppen, B. A1 - Dalguer, L. A. A1 - Klinkel, S. A1 - Butenweg, Christoph ED - Sas, P. T1 - Seismic fragility analysis of a non-conventional reinforced concrete structure considering different uncertainties T2 - Proceedings of ISMA2016, International Conference on Noise and Vibration Engineering/USD2016, International Conference on Uncertainty in Structural Dynamics, / ISMA 2016, USD 2016 Y1 - 2016 SP - 4213 EP - 4225 PB - KU Leuven CY - Leuven ER - TY - CHAP A1 - Wuttke, Claudia A1 - Butenweg, Christoph A1 - Rosin, Julia A1 - Kubalski, Thomas T1 - Verbesserte seismische Nachweiskonzepte für Mauerwerksbauten in deutschen Erdbebengebieten T2 - Adam, Christoph (Hrsg.) ; Univ. Innsbruck: 16. D-A-CH Tagung Erdbebeningenieurwesen & Baudynamik 2019 : 26. und 27. September 2019, Innsbruck Y1 - 2019 SN - 978-3-200-06454-6 SP - 713 EP - 722 CY - Innsbruck ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinkovic, Marko T1 - Damage reduction system for masonry infill walls under seismic loading T2 - ce/papers N2 - Reinforced concrete (RC) frames with masonry infills are frequently used in seismic regions all over the world. Generally masonry infills are considered as nonstructural elements and thus are typically neglected in the design process. However, the observations made after strong earthquakes have shown that masonry infills can modify the dynamic behavior of the structure significantly. The consequences were total collapses of buildings and loss of human lives. This paper presents the new system INODIS (Innovative Decoupled Infill System) developed within the European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in RC Buildings). INODIS decouples the frame and the masonry infill by means of special U-shaped rubbers placed in between frame and infill. The effectiveness of the system was investigated by means of full scale tests on RC frames with masonry infills subjected to in-plane and out-of-plane loading. Furthermore small specimen tests were conducted to determine material characteristics of the components and the resistances of the connections. Finally, a micromodel was developed to simulate the in-plane behavior of RC frames infilled with AAC blocks with and without installation of the INODIS system. KW - earthquakes KW - in-plane and out-of-plane failure KW - INODIS KW - RC frames Y1 - 2018 U6 - http://dx.doi.org/10.1002/cepa.863 N1 - Special Issue: ICAAC ‐ 6th International Conference on Autoclaved Aerated Concrete VL - 2 IS - 4 SP - 267 EP - 273 PB - Ernst & Sohn Verlag CY - Berlin ER - TY - CHAP A1 - Kubalski, T. A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Modena, Claudio T1 - Numerical investigation of masonry infilled R.C. frames T2 - Brick and Block Masonry. Proceedings of the 16th International Brick and Block Masonry Conference, Padova, Italy, 26-30 June 2016 Y1 - 2016 SN - 9781315374963 SP - 1219 EP - 1226 PB - CRC Press CY - Leiden ER - TY - CHAP A1 - Michel, Philipp A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Soil-dependent earthquake spectra in the analysis of liquid-storage-tanks on compliant soil T2 - Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) Y1 - 2020 SN - 978-3-86359-729-0 SP - 245 EP - 254 ER - TY - CHAP A1 - Cacciatore, Pamela A1 - Butenweg, Christoph T1 - Seismic safety of cylindrical granular material steel silos under seismic loading T2 - Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) Y1 - 2020 SN - 978-3-86359-729-0 SP - 231 EP - 244 ER - TY - CHAP A1 - Markinkovic, Marko A1 - Butenweg, Christoph A1 - Pavese, A. A1 - Lanese, I. A1 - Hoffmeister, B. A1 - Pinkawa, M. A1 - Vulcu, C. A1 - Bursi, O. A1 - Nardin, C. A1 - Paolacci, F. A1 - Quinci, G. A1 - Fragiadakis, M. A1 - Weber, F. A1 - Huber, P. A1 - Renault, P. A1 - Gündel, M. A1 - Dyke, S. A1 - Ciucci, M. A1 - Marino, A. T1 - Investigation of the seismic behaviour of structural and nonstructural components in industrial facilities by means of shaking table tests T2 - Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) Y1 - 2020 SN - 978-3-86359-729-0 SP - 159 EP - 172 ER - TY - CHAP A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Seismic behaviour of RC frames with uncoupled masonry infills having two storeys or two bays T2 - 17th International Conference -From historical to sustainable masonry, Krakow, Poland, July 5-8, 2020 Y1 - 2020 U6 - http://dx.doi.org/10.1201/9781003098508-72 SP - 1 EP - 7 ER - TY - CHAP A1 - Rosin, Julia A1 - Kubalski, Thomas A1 - Butenweg, Christoph T1 - Modellierung eines basisisolierten, zylindrischen Flüssigkeitstanks aus Stahl T2 - 13. D-A-CH Tagung für Erdbebeningenieurwesen und Baudynamik (D-A-CH 2013) : 29.-30. August 2013, Wien, Österreich Y1 - 2013 SP - 1 EP - 10 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Kleemann, Anne A1 - Altay, Okyay T1 - Simulation von Impact Belastungen auf Stahlbetonstrukturen T2 - 13. D-A-CH Tagung für Erdbebeningenieurwesen und Baudynamik (D-A-CH 2013) : 29.-30. August 2013, Wien, Österreich Y1 - 2013 SP - 1 EP - 9 ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph T1 - Ermittlung der optimalen Geometrie von Flüssigkeitssäulendämpfern auf Grundlage neuer Optimierungsansätze T2 - 13. D-A-CH Tagung für Erdbebeningenieurwesen und Baudynamik (D-A-CH 2013) : 29.-30. August 2013, Wien, Österreich Y1 - 2013 SP - 1 EP - 10 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Kleemann, Anne A1 - Altay, Okyay A1 - Renault, Philippe T1 - Simulation of impact-loads on reinforced concrete structural elements T2 - 22nd International Conference on Structural Mechanics in Reactor Technology 2013 : (SMiRT 22) ; San Francisco, California, USA, 18 - 23 August 2013 Y1 - 2013 SP - 1 EP - 10 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Rosin, Julia A1 - Kubalski, Thomas T1 - Seismic response of conventional and base-isolated liquid storage tanks T2 - International Conference on Earthquake Engineering : 29.-31.05.2013, Skopje, Mazedonien Y1 - 2013 SP - 1 EP - 8 ER - TY - CHAP A1 - Gellert, Christoph A1 - Norda, Hannah A1 - Butenweg, Christoph T1 - Nonlinear behaviour of masonry under cyclic loading T2 - 7th European Conference on Structural Dynamics, EURODYN 2008 : 7-9 July 2008, Southampton Y1 - 2008 SP - 1 EP - 12 ER - TY - CHAP A1 - Renault, Philippe A1 - Butenweg, Christoph T1 - Seismic vulnerability assessment of bridges T2 - First Munich Bridge Assessment Conference, MBAC 2005 : Munich, 20.-25. June 2005 Y1 - 2005 SP - 1 EP - 16 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Sadegh-Azar, H. A1 - Meskouris, Konstantin T1 - Seismische Vulnerabilität von bestehenden Bauwerken T2 - 5. Forum und Gefahrentag : auf der Suche nach dem Risiko : ein aktuelles Symposium zu Fragen der Risikowahrnehmung und Katastrophenvorsorge in Deutschland, ZDF Mainz Lerchenberg, 13. - 14. Oktober, 2004 Y1 - 2004 SP - 1 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Kuhlmann, Winfried A1 - Lopez, M. A1 - Fernandez, S. T1 - Seismic vulnerability assessment of the Aachen Cathedral based on measurements and numerical simulations T2 - International Conference on Earthquake Engineering to mark 40 years from Catastrophic 1963 Skopje Earthquake, Skopje 2003 Y1 - 2003 SP - 1 EP - 8 ER - TY - CHAP A1 - Wagner, R. A1 - Noh, S.-Y. A1 - Butenweg, Christoph A1 - Meskouris, Konstantin T1 - Seismic excited granular material silos T2 - Structural dynamics - EURODYN 2002 : proceedings of the 4th [i.e. 5th] International Conference on Structural Dynamics, Munich, Germany, 2 - 5 September 2002 / ed. by H. Grundmann ... Y1 - 2002 SN - 90-5809-511-8 SP - 253 EP - 258 PB - Balkema CY - Lisse ER - TY - CHAP A1 - Chudoba, Rostislav A1 - Butenweg, Christoph A1 - Kuhlmann, Wolfram T1 - Technical information system for collaborative material research T2 - Sixth International Conference on Computational Structures Technology : [Prague, Czech Republic, 4 - 6 September 2002] Y1 - 2002 SP - 1 EP - 11 ER - TY - CHAP A1 - Dalguer, Luis A. A1 - Churilov, Sergey A1 - Butenweg, Christoph A1 - Renault, Philippe A1 - Hyun, An Jun T1 - Dynamic analysis of a reinforced concrete electrical nuclear building of SMART 2013 project subjected to earthquake excitation using ABAQUS T2 - Workshop SMART2013 : Paris, France, November 25th - 27th, 2014 Y1 - 2014 SP - 1 EP - 12 ER - TY - CHAP A1 - Altay, Okyay A1 - Butenweg, Christoph A1 - Klinkel, Sven A1 - Taddei, Francesca T1 - Vibration mitigation of wind turbine towers by tuned liquid column dampers T2 - Proceedings of the 9th European Conference on Structural Dynamics, EURODYN 2014 Porto, Portugal, 30 June - 2 July 2014 / A. Cunha, E. Caetano, .... (eds.) Y1 - 2014 SN - 978-972-752-165-4 SP - 1531 EP - 1538 CY - Porto ER - TY - CHAP A1 - Altay, Okyay A1 - Klinkel, Sven A1 - Butenweg, Christoph T1 - Intelligente semiaktive Dämpfungssysteme zur Reduktion periodischer und stochastischer Bauwerksschwingungen T2 - Berichte der Fachtagung Baustatik - Baupraxis 12 am 24. und 25. Februar 2014 an der Technischen Universität München / Hrsg. Kai-Uwe Bletzinger ... Y1 - 2014 SN - 978-3-00-041256-1 SP - 397 EP - 404 PB - Lehrstuhl für Statik, Techn. Univ. München CY - München ER - TY - CHAP A1 - Rosin, Julia A1 - Butenweg, Christoph T1 - Berechnungsansatz für basisisolierte Tankbauwerke T2 - Berichte der Fachtagung Baustatik - Baupraxis 12 am 24. und 25. Februar 2014 an der Technischen Universität München / Hrsg. Kai-Uwe Bletzinger ... Y1 - 2014 SN - 978-3-00-041256-1 SP - 103 EP - 112 PB - Lehrstuhl für Statik, Techn. Univ. München CY - München ER - TY - CHAP A1 - Edip, Kemal A1 - Garevski, Mihail A1 - Butenweg, Christoph A1 - Sheshov, Vlatko A1 - Bojadjieva, Julijana A1 - Gjorgjiev, Igor T1 - New coupled finite-infinite element approach for wave propagation simulation of unbounded soil media T2 - 2nd European Conference on Earthquake Engineering and Seismology 2014 (2nd ECEES) : joint event of the 15th European Conference on Earthquake Engineering and the 34th General Assembly of the European Seismological Commission : Istanbul, Turkey, 25-29 August 2014 / European Association for Earthquake Engineering (EAEE) ; Vol. 2 Y1 - 2014 SN - 978-1-5108-1021-1 SP - 1556 EP - 1561 PB - Curran Associates, Inc. CY - Red Hook, NY ER - TY - CHAP A1 - Rosin, Julia A1 - Henneböhl, Benedickt A1 - Butenweg, Christoph T1 - Global buckling analysis of cylindrical liquid storage tanks under earthquake loading T2 - 2nd European Conference on Earthquake Engineering and Seismology 2014 (2nd ECEES) : joint event of the 15th European Conference on Earthquake Engineering and the 34th General Assembly of the European Seismological Commission : Istanbul, Turkey, 25-29 August 2014 / European Association for Earthquake Engineering (EAEE) ; Vol. 6 Y1 - 2014 SN - 978-1-5108-1021-1 SP - 5270 EP - 5281 PB - Curran Associates, Inc. CY - Red Hook, NY ER - TY - CHAP A1 - Rosin, Julia A1 - Butenweg, Christoph T1 - Seismic isolation of cylindrical liquid storage tanks T2 - Proceedings of the 9th European Conference on Structural Dynamics, EURODYN 2014 Porto, Portugal, 30 June - 2 July 2014 / A. Cunha, E. Caetano, .... (eds.) Y1 - 2014 SN - 978-972-752-165-4 SP - 3145 EP - 3152 CY - Porto ER - TY - CHAP A1 - Giresini, Linda A1 - Butenweg, Christoph A1 - Andreini, M. A1 - De Falco, A. A1 - Sassu, M. T1 - Macro-elements identification in historic chapels: the case of St. Venerio Chapel in Reggiolo - Emilia Romagna T2 - 9th International Conference on Structural Analyses of Historical Conctruction, 14 - 17 October, 2014, Mexico City Y1 - 2014 SP - 1 EP - 12 ER - TY - CHAP A1 - Giresini, Linda A1 - Butenweg, Christoph A1 - Andreini, M. A1 - De Falco, A. A1 - Sassu, M. T1 - Numerical calibration of a macro-element for vaultes system in historic churches T2 - 9th International Conference on Structural Analyses of Historical Conctruction, 14 - 17 October, 2014, Mexico City Y1 - 2014 SP - 1 EP - 12 ER - TY - CHAP A1 - Edip, Kemal A1 - Garevski, Mihail A1 - Butenweg, Christoph A1 - Sesov, Vlatko A1 - Bojadjieva, Julijana A1 - Gjorgjiev, Igor T1 - Boundary effects on seismic analysis of multi-storey frames considering soil structure interaction phenomenon T2 - Seismic design of industrial facilities : proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) ; [Aachen, 26. - 27. September 2013] / Chair of Structural Statics and Dynamics, RWTH Aachen. Sven Klinkel ..., ed Y1 - 2014 SN - 978-3-658-02809-1 (Print) ; 978-3-658-02810-7 U6 - http://dx.doi.org/10.1007/978-3-658-02810-7_47 SP - 569 EP - 576 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Rosin, Julia A1 - Kubalski, Thomas A1 - Butenweg, Christoph T1 - Seismic Design of cylindrical liquid storage tanks T2 - Seismic design of industrial facilities : proceedings of the International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) ; [Aachen, 26. - 27. September 2013] / Chair of Structural Statics and Dynamics, RWTH Aachen. Sven Klinkel ..., ed. Y1 - 2014 SN - 978-3-658-02810-7 (E-Book) ; 978-3-658-02809-1 (Print) U6 - http://dx.doi.org/10.1007/978-3-658-02810-7_36 SP - 429 EP - 440 PB - Springer Vieweg CY - Wiesbaden ER - TY - CHAP A1 - Butenweg, Christoph T1 - Eurocode 8 : Erdbebenauslegung von Tragwerken T2 - Eurocodes 2012 kompakt - Chancen nutzen : 36. Darmstädter Massivbauseminar Zukunftsfähiges Planen und Bauen, 7. und 8. März Y1 - 2012 SP - 257 EP - 272 PB - Freunde des Inst. für Massivbau der TU CY - Darmstadt ER - TY - CHAP A1 - Butenweg, Christoph A1 - Meskouris, Konstantin A1 - Meister, Sylvia A1 - Dreyer, Stephan A1 - Schulte-Althoff, Christoph T1 - Technisches Informationssystem für die Entwicklung textilbewehrten Betons T2 - Textilbeton in Theorie und Praxis : Tagungsband zum 6. Kolloquium zu Textilbewehrten Tragwerken (CTRS6) in Berlin am 19. und 20.9.2011 / Technische Universität Dresden, Sonderforschungsbereich 528, herausgegeben von Manfred Curbach und Regine Ortlepp Y1 - 2011 SN - 978-3-86780-122-5 SP - 257 EP - 268 PB - Technische Universität CY - Dresden ER - TY - CHAP A1 - Taddei, Francesca A1 - Reindl, Lukas A1 - Park, Jin A1 - Butenweg, Christoph A1 - Karadogan, Faruk T1 - Numerical investigation of AAC wall panels based on the damage plasticity constitutive law T2 - Cement, Wapno, Beton ; 2011, 7, Special issue: 5th International Conference on Autoclaved Aerated Concrete 'Securing a sustainable future' to be held at Bydgoszcz to celebrate 60 years of AAC experience in Poland, Bydgoszcz, September 14-17, 2011 Y1 - 2011 SN - 1425-8129 SP - 86 EP - 91 PB - Stowarzyszenie Producentów Cementu i Wapna CY - Krakow ER - TY - CHAP A1 - Butenweg, Christoph A1 - Park, Jin T1 - Verhalten von Ankerschienensystemen unter statisch zyklischen Beanspruchungen T2 - 12. D-A-CH Tagung 2011 : Erdbeben und Baudynamik ; 15./16. September 2011, Hannover, Deutschland / Bundesanstalt für Geowissenschaften und Rohstoffe. C. Könke (Hrsg.) Y1 - 2011 SN - 3-930108-11-9 SP - 349 EP - 365 CY - Deutsche Gesellschaft für Erdbebeningenieurwesen und Baudynamik ER - TY - CHAP A1 - Meskouris, Konstantin A1 - Holtschoppen, Britta A1 - Butenweg, Christoph A1 - Rosin, Julia T1 - Seismic analysis of liquid storage tanks T2 - Earthquake Geology and Archaeology: Science, Society and Critical facilities : proceedings ; 2nd INQUA-IGCP 567 International Workshop on Active Tectonics, Earthquake Geology, Archaeology and Engineering ; 19-24 September 2011, Corinth (Greece) / Eds.: C. Grützner ; R. Pérez-Lopez ; T. Fernández Steeger ; I. Papanikolaou ; K. Reicherter ; P. G. Silva ; A. Vött. Volume 2 Y1 - 2011 SN - 978-960-466-093-3 SP - 136 EP - 139 PB - The Natural hazards Laboratory, National and Kapodistrian University of Athens CY - Athens ER - TY - CHAP A1 - Reindl, Lukas A1 - Butenweg, Christoph A1 - Kubalski, Thomas T1 - Numerical simulation of unreinforced masonry walls subject to dynamic out-of-plane loading T2 - COMPDYN 2011 : ECCOMAS Thematic Conference ; Proceedings of the 3rd International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering ; 25-28 May, 2011, Corfu, Greece / Eds.: M. Papadrakakis ... Y1 - 2011 SN - 978-960-99994-0-3 SP - 1 EP - 10 PB - National Technical Univ. of Athens CY - Athen ER - TY - CHAP A1 - Park, Jin A1 - El-Daib, Khaled A1 - Butenweg, Christoph A1 - Gellert, Christoph T1 - A novel macroelement approach for masonry walls T2 - Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011 : Leuven, Belgium, 4 - 6 July 2011 / Katholieke Universiteit Leuven, ... G. De Roeck ... (eds) Y1 - 2011 SN - 978-90-76019-31-4 SP - 3281 EP - 3286 PB - K. U. Leuven, Dep. of Civil Engineering CY - Leuven ER - TY - CHAP A1 - Holtschoppen, Britta A1 - Cornelissen, Philipp A1 - Butenweg, Christoph A1 - Meskouris, Konstantin T1 - Vereinfachtes Berechnungsverfahren zur Berücksichtigung der Interaktionsschwingung bei flüssigkeitsgefüllten Tankbauwerken unter seismischer Belastung T2 - Berichte der Fachtagung Baustatik-Baupraxis 11 : am 21. und 22. Februar 2011 an der Universität Innsbruck / Hrsg. Gernot Beer ... Y1 - 2011 SN - 978-3-85125-115-9 SP - 155 EP - 162 PB - Inst. für Baustatik, Techn. Univ. Graz CY - Graz ER - TY - CHAP A1 - Reindl, Lukas A1 - Park, Jin A1 - Norda, Hannah A1 - Butenweg, Christoph T1 - Seismic design of masonry walls subject to out-of-plane bending T2 - Proceedings of the Tenth International Conference on Computational Structures Technology : Valencia, Spain, 14 - 17 September 2010 / organised in association with: Universidad Politecnica de Valencia ... Ed. by B. H. V. Topping ... Y1 - 2010 SN - 978-1-905088-36-2 U6 - http://dx.doi.org/10.4203/ccp.93.348 SP - Paper 348 PB - Civil-Comp Press CY - Kippen ER - TY - CHAP A1 - Gellert, Christoph A1 - Park, Jin A1 - Butenweg, Christoph T1 - Seismic safety verification of masonry structures T2 - Proceedings of the Eight International Masonry Conference : held in Dresden from 4th to 7th of July 2010 / [International Masonry Society ; Technische Universität Dresden]. Ed. by: Wolfram Jäger ... Volume 1. (Masonry / International Masonry Society Special Publication ; 11) Y1 - 2010 SN - 978-3-00-031381-3 SP - 813 EP - 822 PB - ARGE 8IMC Dresden CY - Radebeul ER - TY - CHAP A1 - Frauenrath, Tobias A1 - Gömmel, Andreas A1 - Butenweg, Christoph A1 - Otten, Mario A1 - Niendorf, Thoralf T1 - 3D mapping of vocal fold geometry during articulatory maneuvers using ultrashort echo time imaging at 3.0 T T2 - ISMRM-ESMRMB joint annual meeting 2010 : Stockholm, Sweden, 1 - 7 May 2010. Band 4 Y1 - 2010 SN - 978-1-617-82008-3 SP - 3087 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Park, Jin A1 - Butenweg, Christoph A1 - Reindl, Lukas T1 - Untersuchung der Eignung von Ankerschienensystemen unter Erdbebeneinwirkungen T2 - Conference proceedings / ANSYS Conference & 28th CADFEM Users´ Meeting 2010 : 3. - 5. November 2010, Eurogess Aachen / CADFEM; ANSYS Y1 - 2010 SN - 3-937523-07-3 SP - Dokument 2.11.1 PB - CADFEM [u.a.] CY - Grafing ER - TY - CHAP A1 - Gömmel, Andreas A1 - Niendorf, Thoralf A1 - Frauenrath, Tobias A1 - Otten, Mario A1 - Butenweg, Christoph A1 - Kob, Malte T1 - 3D vocal fold geometry mapping using Magnetic Resonance Imaging T2 - Fortschritte der Akustik : 36. Deutsche Jahrestagung für Akustik ; 15.-18. März 2010, [Berlin ; DAGA 2010] / DEGA ... Wiss. Ed. Michael Möser ... Band 1 Y1 - 2010 SN - 978-3-9808659-8-2 SP - 271 EP - 272 PB - Deutsche Gesellschaft für Akustik CY - Berlin ER - TY - CHAP A1 - Gellert, Christoph A1 - Butenweg, Christoph T1 - Nichtlinearer Erdbebennachweis von Mauerwerksbauten T2 - Erdbeben und Mauerwerk : 11. D-A-CH-Tagung 2009 ; [10./11. September 2009 in Zürich] / SGEB, Swiss Society for Earthquake Engineering and Structural Dynamics; Schweizerischer Ingenieur- und Architektenverein, Fachgruppe für Brückenbau und Hochbau. [Hrsg. Dazio, Alessandro ...] Y1 - 2009 SN - 978-3-03732-021-1 SP - 125 EP - 132 PB - SIA CY - Zürich ER - TY - CHAP A1 - Gömmel, Andreas A1 - Kob, Malte A1 - Niendorf, Thoralf A1 - Butenweg, Christoph T1 - An approach for numerical calculation of glottal flow during glottal closure T2 - Proceedings / NAG/DAGA 2009, International Conference on Acoustics : Rotterdam, 23 - 26 March 2009 ; [including the 35th German Annual Conference on Acoustics (DAGA)] / [organisers: Acoustical Society of the Netherlands (NAG); German Acoustical Society (DEGA) ...]. Ed. by Marinus M. Boone Y1 - 2009 SN - 978-3-9808659-6-8 SP - 1722 EP - 1725 PB - DEGA CY - Berlin ER - TY - CHAP A1 - Butenweg, Christoph A1 - Gellert, Christoph A1 - Meskouris, Konstantin T1 - Ein neuer Ansatz zum Nachweis von Mauerwerksbauten T2 - Berichte der Fachtagung Baustatik - Baupraxis 10 : am 17. und 18. März 2008 in Karlsruhe / Hrsg.: Werner Wagner. Institut für Baustatik, Universität Karlsruhe (TH) Y1 - 2008 SN - 978-3-935322-14-0 SP - 103 EP - 116 PB - Inst. für Baustatik, Univ. Karlsruhe (TH) CY - Karlsruhe ER - TY - CHAP A1 - Butenweg, Christoph A1 - Gellert, Christoph T1 - Displacement based design of masonry structures T2 - Proceedings of the 14th International Brick and Block Masonry Conference : (Incorporating the 8th Australasian Masonry Conference) : Sydney, Australia, 13.-20. February 2008 / ed. Mark Masia ... Y1 - 2008 SN - 978-19-2070-1-92-5 SP - 1 EP - 10 PB - University of Newcastle CY - Callaghan ER - TY - CHAP A1 - Butenweg, Christoph A1 - Gellert, Christoph A1 - Reindl, Lukas T1 - Capacity design of masonry buildings under cyclic loading T2 - Seismic Risk : Earthquakes in North-Western Europe ; international colloquium ; Liège on 11 and 12 September 2008 / Belgian Seismic Group (BeSeiG). Ed.: T. Camlebeeck ... Y1 - 2008 SN - 978-2-87456-063-7 SP - 201 EP - 208 PB - Editions de l'Université de Liège CY - Liège ER - TY - CHAP A1 - Meskouris, Konstantin A1 - Holler, Stefan A1 - Butenweg, Christoph A1 - Meiners, Daniel T1 - A multiphase model with hypoplastic formulation of the solid phase and its application to earthquake engineering problems T2 - Computational structural dynamics and earthquake engineering / ed. by Manolis Papadrakakis .... (Structures and infrastructures series ; 2) Y1 - 2009 SN - 978-0-415-45261-8 U6 - http://dx.doi.org/10.1201/9780203881637.ch19 SP - 293 EP - 308 PB - CRC Press CY - Boca Raton, Fla. [u.a.] ER - TY - CHAP A1 - Butenweg, Christoph T1 - Nachweis der Erdbebensicherheit von Silos aus Stahl unter Erdbebenbelastung T2 - D-A-CH Tagung 2007 : Aktuelle Themen des Erdbebeningenieurwesens und der Baudynamik ; 27. und 28. September 2007, arsenal research, TECHbase Vienna Y1 - 2007 SP - 1 EP - 14 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Mistler, Michael T1 - Seismic resistance of unreinforced masonry buildings T2 - Proceedings of the Eighth International Conference on Computational Structures Technology : [Las Palmas de Cran Canaria, 12-15 September 2006] / ed. by B. H. V. Topping ... Y1 - 2006 SN - 1-905088-06-X U6 - http://dx.doi.org/10.4203/ccp.83.9 SP - Paper 9 PB - Civil-Comp Press CY - Stirling ER - TY - CHAP A1 - Kob, Malte A1 - Gömmel, Andreas A1 - Butenweg, Christoph A1 - Niendorf, Thoralf T1 - Training of a combined model of larynx and vocal folds with data from MRI measurements T2 - The 5th International Conference on Voice Physiology and Biomechanics: Variations across Cultures and Species, July 12-14, 2006, Tokyo, Japan. Proceedings Y1 - 2006 SP - 45 EP - 46 ER - TY - CHAP A1 - Meskouris, Konstantin A1 - Mistler, Michael A1 - Butenweg, Christoph T1 - Mauerwerksbauten unter Erdbebenbelastung T2 - Numerische Methoden zur Problemlösung im konstruktiven Bauwesen : 34. Aachener Baustofftag ; 02. Februar 2006 Y1 - 2006 PB - IBAC CY - Aachen ER - TY - CHAP A1 - Renault, Philippe A1 - Butenweg, Christoph A1 - Meskouris, Konstantin T1 - Baudynamische Untersuchung von Brückenbauwerken im Kölner Raum T2 - Baudynamik : Tagung Kassel, 17. und 18. Mai 2006 / VDI-Gesellschaft Entwicklung, Konstruktion, Vertrieb. (VDI-Berichte ; 1941) Y1 - 2006 SN - 3-18-091941-8 SP - 121 EP - 140 PB - VDI-Verlag CY - Düsseldorf ER - TY - CHAP A1 - Gömmel, Andreas A1 - Butenweg, Christoph A1 - Kob, Malte T1 - Towards a complete finite-element model of human phonation: modeling phonatory maneuvers T2 - 12th Workshop on the Finite Element Method in Biomedical Engineering, Biomechanics and Related Fields : Ulm, Germany, 20 - 21 July 2005 / University of Ulm, Department of Orthodontics ... Y1 - 2005 SN - 978-3-9806183-8-0 PB - Univ., Dep. of Orthodontics CY - Ulm ER - TY - CHAP A1 - Gömmel, Andreas A1 - Krämer, Sebastian A1 - Butenweg, Christoph A1 - Kob, Malte T1 - A combined FE and multiple-mass model for numerical simulation of phonatory maneuvers T2 - Proceedings / Forum Acusticum, Budapest, 29 Aug - 2 Sep, 2005 : [Acoustics: science and technology for knowledge based society and healthy environment] / ed. by: Fülöp Augusztinovicz ... Y1 - 2005 SN - 978-963-8241-68-9 SP - 2759 EP - 2764 PB - OPAKFI Tud. Egyesület CY - Budapest ER - TY - CHAP A1 - Kalker, Ines A1 - Neumann, M. A1 - Butenweg, Christoph A1 - Holler, Stefan T1 - Modelling of textile strengthened masonry T2 - Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing : [Rome, Italy, 30. August - 2. September 2005] / ed. by B. H. V. Topping Y1 - 2005 SN - 1-905088-00-0 U6 - http://dx.doi.org/10.4203/ccp.81.184 SP - 447 EP - 448 PB - Civil-Comp Press CY - Stirling ER - TY - CHAP A1 - Butenweg, Christoph A1 - Thierauf, Georg T1 - Erfahrungen bei der Entwicklung eines objekt-orientierten FE-Programmes T2 - Forum Bauinformatik - Junge Wissenschaftler Forschen : Cottbus '96 / Olaf Horstmann ... (Hrsg.) (Fortschrittberichte VDI : Reihe 4, Bauingenieurwesen ; 135) Y1 - 1996 SN - 3-18-313504-3 N1 - Supercomputer 1996: Anwendungen, Architekturen, Trends. Hans-Werner Meuer (Hrsg.). De Gruyter Saur, Mannheim. 246 S. ISBN-10 ‏: ‎3598224133. ISBN-13 ‏: ‎ 978-3598224133 SP - 60 EP - 65 PB - VDI-Verlag CY - Düsseldorf ER -