TY - CHAP A1 - Kern, Alexander A1 - Krichel, Frank A1 - Müller, Klaus-Peter T1 - Lightning protection design of a renewable energy hybrid-system without power mains connection N2 - In the year 2000 a direct lightning strike to the hybridsystem without power mains connection VATALI on the Greek island Crete results in the destruction and damage of some mechanical and electrical components. The hybrid-system VATALI was not lightning protected at that time. The hardware damage costs are approx. 60,000 €. The exposed site of the hybrid-system on top of a mountain was and still is the reason for a high risk of lightning strikes. Also in the future further lightning strikes have to be taken into consideration. In the paper a fundamental lightning protection design concept for renewable energy hybrid-systems without power mains connection and protection measures against direct strikes and overvoltages are shown in detail. The design concept was realized exemplarily for the hybrid-system VATALI. The hardware costs for the protection measures were about 15,000 €. About 50% of the costs are due to protection measures against direct strikes, 50% are due to overvoltage protection. Future extensions, new installations, or modifications have to be included into the lightning protection design concept of the hybrid-system. KW - Blitzschutz KW - Erneuerbare Energien KW - Hybridsystem KW - Lightning protection KW - Renewable energy KW - hybrid-system Y1 - 2001 ER - TY - CHAP A1 - Blanke, Tobias A1 - Schmidt, Katharina S. A1 - Göttsche, Joachim A1 - Döring, Bernd A1 - Frisch, Jérôme A1 - van Treeck, Christoph ED - Weidlich, Anke ED - Neumann, Dirk ED - Gust, Gunther ED - Staudt, Philipp ED - Schäfer, Mirko T1 - Time series aggregation for energy system design: review and extension of modelling seasonal storages T2 - Energy Informatics N2 - Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, “Time series aggregation for energy system design: Modeling seasonal storage”, has developed a seasonal storage model to address this issue. Simultaneously, the paper “Optimal design of multi-energy systems with seasonal storage” has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results. KW - Energy system KW - Renewable energy KW - Mixed integer linear programming (MILP) KW - Typical periods KW - Time-series aggregation Y1 - 2022 U6 - http://dx.doi.org/10.1186/s42162-022-00208-5 SN - 2520-8942 N1 - Proceedings of the 11th DACH+ Conference on Energy Informatics, 15-16 September 2022, Freiburg, Germany. VL - 5 IS - 1, Article number: 17 SP - 1 EP - 14 PB - Springer Nature ER -