TY - CHAP A1 - Staat, Manfred A1 - Tran, Thanh Ngoc A1 - Pham, Phu Tinh T1 - Limit and shakedown reliability analysis by nonlinear programming N2 - 7th International Conference on Reliability of Materials and Structures (RELMAS 2008). June 17 - 20, 2008 ; Saint Petersburg, Russia. pp 354-358. Reprint with corrections in red Introduction Analysis of advanced structures working under extreme heavy loading such as nuclear power plants and piping system should take into account the randomness of loading, geometrical and material parameters. The existing reliability are restricted mostly to the elastic working regime, e.g. allowable local stresses. Development of the limit and shakedown reliability-based analysis and design methods, exploiting potential of the shakedown working regime, is highly needed. In this paper the application of a new algorithm of probabilistic limit and shakedown analysis for shell structures is presented, in which the loading and strength of the material as well as the thickness of the shell are considered as random variables. The reliability analysis problems may be efficiently solved by using a system combining the available FE codes, a deterministic limit and shakedown analysis, and the First and Second Order Reliability Methods (FORM/SORM). Non-linear sensitivity analyses are obtained directly from the solution of the deterministic problem without extra computational costs. KW - Finite-Elemente-Methode KW - Limit analysis KW - Shakedown analysis Y1 - 2008 ER - TY - CHAP A1 - Staat, Manfred T1 - Limit and shakedown analysis under uncertainty T2 - Proceedings International Conference on Advances in Computational Mechanics (ACOME) Y1 - 2012 N1 - International Conference on Advances in Computational Mechanics (ACOME), August 14-16, 2012, Ho Chi Minh City, Vietnam SP - 837 EP - 861 ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Trinh, Tu Luc A1 - Dao, Ngoc Tien A1 - Giap, Van Tan A1 - Truong, Manh Khuyen A1 - Dinh, Thuy Ha A1 - Staat, Manfred T1 - Limit and shakedown analysis of structures under random strength T2 - Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022 N2 - Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables. KW - Reliability of structures KW - Stochastic programming KW - Chance constrained programming KW - Shakedown analysis KW - Limit analysis Y1 - 2022 SN - 978-604-357-084-7 SP - 510 EP - 518 PB - Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik) CY - Hanoi ER - TY - CHAP A1 - Staat, Manfred A1 - Heitzer, Michael T1 - Limit and shakedown analysis for plastic design N2 - Limit and shakedown theorems are exact theories of classical plasticity for the direct computation of safety factors or of the load carrying capacity under constant and varying loads. Simple versions of limit and shakedown analysis are the basis of all design codes for pressure vessels and pipings. Using Finite Element Methods more realistic modeling can be used for a more rational design. The methods can be extended to yield optimum plastic design. In this paper we present a first implementation in FE of limit and shakedown analyses for perfectly plastic material. Limit and shakedown analyses are done of a pipe–junction and a interaction diagram is calculated. The results are in good correspondence with the analytic solution we give in the appendix. KW - Einspielen KW - Traglast KW - Finite-Elemente-Methode KW - Traglastanalyse KW - Einspielanalyse KW - FEM KW - limit analysis KW - shakedown analysis Y1 - 1997 ER - TY - CHAP A1 - Staat, Manfred A1 - Szelinski, E. A1 - Heitzer, Michael T1 - Kollapsanalyse von längsfehlerbehafteten Rohren und Behältern T1 - Collapse analysis of longitudinally flawed pipes and vessels N2 - Es werden verbesserte Kollapsanalysen von dickwandigen, mit axialen Oberflächenfehlern behafteten Rohren und Behältern vorgeschlagen. KW - Druckbehälter KW - Stahl KW - Druckbelastung KW - Druckbeanspruchung KW - Rohr KW - Rohrbruch KW - Fehlerstellen KW - pipes KW - vessels KW - load limit KW - burst tests KW - burst pressure KW - flaw Y1 - 2001 ER - TY - CHAP A1 - Nix, Yvonne A1 - Frotscher, Ralf A1 - Staat, Manfred ED - Eberhardsteiner, J. T1 - Implementation of the edge-based smoothed extended finite element method T2 - Proceedings 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012) Vienna, Austria, September 10-14, 2012 Y1 - 2012 ER - TY - CHAP A1 - Kahmann, Stephanie A1 - Hackl, Michael A1 - Wegmann, Kilian A1 - Müller, Lars-Peter A1 - Staat, Manfred ED - Erni, Daniel T1 - Impact of a proximal radial shortening osteotomy on the distribution of forces and the stability of the elbow T2 - 1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen N2 - The human arm consists of the humerus (upper arm), the medial ulna and the lateral radius (forearm). The joint between the humerus and the ulna is called humeroulnar joint and the joint between the humerus and the radius is called humeroradial joint. Lateral and medial collateral ligaments stabilize the elbow. Statistically, 2.5 out of 10,000 people suffer from radial head fractures [1]. In these fractures the cartilage is often affected. Caused by the injured cartilage, degenerative diseases like posttraumatic arthrosis may occur. The resulting pain and reduced range of motion have an impact on the patient’s quality of life. Until now, there has not been a treatment which allows typical loads in daily life activities and offers good long-term results. A new surgical approach was developed with the motivation to reduce the progress of the posttraumatic arthrosis. Here, the radius is shortened by 3 mm in the proximal part [2]. By this means, the load of the radius is intended to be reduced due to a load shift to the ulna. Since the radius is the most important stabilizer of the elbow it has to be confirmed that the stability is not affected. In the first test (Fig. 1 left), pressure distributions within the humeroulnar and humeroradial joints a native and a shortened radius were measured using resistive pressure sensors (I5076 and I5027, Tekscan, USA). The humerus was loaded axially in a tension testing machine (Z010, Zwick Roell, Germany) in 50 N steps up to 400 N. From the humerus the load is transmitted through both the radius and the ulna into the hand which is fixed on the ground. In the second test (Fig. 1 right), the joint stability was investigated using a digital image correlation system to measure the displacement of the ulna. Here, the humerus is fixed with a desired flexion angle and the unconstrained forearm lies on the ground. A rope connects the load actuator with a hook fixed in the ulna. A guide roller is used so that the rope pulls the ulna horizontally when a tensile load is applied. This creates a moment about the elbow joint with a maximum value of 7.5 Nm. Measurements were performed with varying flexion angles (0°, 30°, 60°, 90°, 120°). For both tests and each measurement, seven specimens were used. Student ́s t-test was employed to determine whether the mean values of the measurements in native specimen and operated specimens differ significantly. Y1 - 2016 U6 - http://dx.doi.org/10.17185/duepublico/40821 SP - 7 EP - 8 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Frotscher, Ralf A1 - Staat, Manfred ED - Nithiarasu, Perumal T1 - Homogenization of a cardiac tissue construct T2 - CMBE15 : 4th International Conference on Computational & Mathematical Biomedical Engineering ; 29th June - 1st July 2015 ; École Normale Supérieure de Cachan ; Cachan (Paris), France Y1 - 2015 SN - 2227-9385 N1 - Konferenzband unter: http://www.compbiomed.net/getfile.php?type=12/site_documents&id=Proceedings_2227-9385_compressed.pdf SP - 645 EP - 648 PB - CMBE CY - [s.l.] ER - TY - CHAP A1 - Ballmann, J. A1 - Raatschen, Hans-Jürgen A1 - Staat, Manfred T1 - High stress intensities in focussing zones of waves N2 - The propagation of mechanical waves in plates of isotropic elastic material is investigated. After a short introduction to the understanding of focussing of stress waves in a plate with a curved boundary the method of characteristics is applied to a plate of hyperelastic material. Using this method the propagation of acceleration waves is discussed. Based on this a numerical difference scheme is developed for solving initial-boundary-value problems and applied to two examples: propagation of a point disturbance in a homogeneously finitely strained non-linear elastic plate and geometrical focussing in al linear elastic plate. KW - Technische Mechanik KW - Wellen KW - mechanical waves Y1 - 1985 U6 - http://dx.doi.org/10.1016/B978-0-444-42520-1.50015-3 ER - TY - CHAP A1 - Staat, Manfred A1 - Ballmann, J. T1 - Fundamental aspects of numerical methods for the propagation of multi-dimensional nonlinear waves in solids T2 - Nonlinear hyperbolic equations : theory, computations methods, and applications ; proceedings of the 2nd International Conference on Nonlinear Hyperbolic Problems, Aachen N2 - The nonlinear scalar constitutive equations of gases lead to a change in sound speed from point to point as would be found in linear inhomogeneous (and time dependent) media. The nonlinear tensor constitutive equations of solids introduce the additional local effect of solution dependent anisotropy. The speed of a wave passing through a point changes with propagation direction and its rays are inclined to the front. It is an open question whether the widely used operator splitting techniques achieve a dimensional splitting with physically reasonable results for these multi-dimensional problems. May be this is the main reason why the theoretical and numerical investigations of multi-dimensional wave propagation in nonlinear solids are so far behind gas dynamics. We hope to promote the subject a little by a discussion of some fundamental aspects of the solution of the equations of nonlinear elastodynamics. We use methods of characteristics because they only integrate mathematically exact equations which have a direct physical interpretation. KW - Nichtlineare Welle KW - Nichtlineare Gleichung KW - Festkörper KW - Elastodynamik KW - Multi-dimensional wave propagation KW - nonlinear solids KW - nonlinear tensor constitutive equation Y1 - 1989 SP - 574 EP - 588 ER - TY - CHAP A1 - Tran, Thanh Ngoc A1 - Staat, Manfred A1 - Kreißig, R. T1 - Finite element shakedown and limit reliability analysis of thin shells N2 - A procedure for the evaluation of the failure probability of elastic-plastic thin shell structures is presented. The procedure involves a deterministic limit and shakedown analysis for each probabilistic iteration which is based on the kinematical approach and the use the exact Ilyushin yield surface. Based on a direct definition of the limit state function, the non-linear problems may be efficiently solved by using the First and Second Order Reliabiblity Methods (Form/SORM). This direct approach reduces considerably the necessary knowledge of uncertain technological input data, computing costs and the numerical error. In: Computational plasticity / ed. by Eugenio Onate. Dordrecht: Springer 2007. VII, 265 S. (Computational Methods in Applied Sciences ; 7) (COMPLAS IX. Part 1 . International Center for Numerical Methods in Engineering (CIMNE)). ISBN 978-1-402-06576-7 S. 186-189 KW - Finite-Elemente-Methode KW - Limit analysis KW - shakedown analysis KW - Exact Ilyushin yield surface KW - Random variable KW - First Order Reliabiblity Method Y1 - 2007 ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Nguyen, Nhu Hunyh A1 - Staat, Manfred T1 - Finite Element Implementation of a 3D Fung-type Model T2 - ESMC-2012 - 8th European Solid Mechanics Conference, Graz, Austria, July 9-13, 2012 Y1 - 2012 SN - 978-3-85125-223-1 PB - Verlag d. Technischen Universität Graz CY - Graz ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Erni, Daniel T1 - Female pelvic floor dysfunction: progress weakening of the support system T2 - 1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen N2 - The structure of the female pelvic floor (PF) is an inter-related system of bony pelvis,muscles, pelvic organs, fascias, ligaments, and nerves with multiple functions. Mechanically, thepelvic organ support system are of two types: (I) supporting system of the levator ani (LA) muscle,and (II) the suspension system of the endopelvic fascia condensation [1], [2]. Significantdenervation injury to the pelvic musculature, depolimerization of the collagen fibrils of the softvaginal hammock, cervical ring and ligaments during pregnancy and vaginal delivery weakens thenormal functions of the pelvic floor. Pelvic organ prolapse, incontinence, sexual dysfunction aresome of the dysfunctions which increases progressively with age and menopause due toweakened support system according to the Integral theory [3]. An improved 3D finite elementmodel of the female pelvic floor as shown in Fig. 1 is constructed that: (I) considers the realisticsupport of the organs to the pelvic side walls, (II) employs the improvement of our previous FEmodel [4], [5] along with the patient based geometries, (III) incorporates the realistic anatomy andboundary conditions of the endopelvic (pubocervical and rectovaginal) fascia, and (IV) considersvarying stiffness of the endopelvic fascia in the craniocaudal direction [3]. Several computationsare carried out on the presented computational model with healthy and damaged supportingtissues, and comparisons are made to understand the physiopathology of the female PF disorders. Y1 - 2016 U6 - http://dx.doi.org/10.17185/duepublico/40821 SP - 11 EP - 12 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Tran, Thanh Ngoc A1 - Matthies, Hermann G. A1 - Stavroulakis, Georgios Eleftherios A1 - Staat, Manfred T1 - FEM Shakedown of uncertain structures by chance constrained programming T2 - PAMM Proceedings in Applied Mathematics and Mechanics Y1 - 2016 U6 - http://dx.doi.org/10.1002/pamm.201610346 SN - 1617-7061 N1 - Special Issue: Joint 87th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) and Deutsche Mathematiker-Vereinigung VL - 16 IS - 1 SP - 715 EP - 716 ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Staat, Manfred T1 - FEM shakedown analysis of Kirchhoff-Love plates under uncertainty of strength T2 - Proceedings of UNCECOMP 2021 N2 - A new formulation to calculate the shakedown limit load of Kirchhoff plates under stochastic conditions of strength is developed. Direct structural reliability design by chance con-strained programming is based on the prescribed failure probabilities, which is an effective approach of stochastic programming if it can be formulated as an equivalent deterministic optimization problem. We restrict uncertainty to strength, the loading is still deterministic. A new formulation is derived in case of random strength with lognormal distribution. Upper bound and lower bound shakedown load factors are calculated simultaneously by a dual algorithm. Y1 - 2021 SN - 978-618-85072-6-5 U6 - http://dx.doi.org/10.7712/120221.8041.19047 N1 - Proceedings of UNCECOMP 2021, 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering, streamed from Athens, Greece, 28–30 June 2021. SP - 323 EP - 338 ER - TY - CHAP A1 - Pham, Phu Tinh A1 - Nguyen, Thanh Ngoc A1 - Staat, Manfred T1 - FEM based shakedown analysis of hardening structures T2 - Proceedings International Conference on Advances in Computational Mechanics (ACOME) Y1 - 2012 N1 - International Conference on Advances in Computational Mechanics (ACOME), August 14-16, 2012, Ho Chi Minh City, Vietnam SP - 870 EP - 882 ER - TY - CHAP A1 - Tran, Thanh Ngoc A1 - Novacek, V. A1 - Tolba, R. A1 - Klinge, U. A1 - Turquier, F. A1 - Staat, Manfred T1 - Experimental and Computational approach to study colorectal anastomosis. ISB2011, Proceedings of the XXIII Congress of the International Society of Biomechanics, Brussels, Belgium, July 3-7, 2011 N2 - Summary: This paper presents a methodology to study and understand the mechanics of stapled anastomotic behaviors by combining empirical experimentation and finite element analysis. Performance of stapled anastomosis is studied in terms of leakage and numerical results which are compared to in vitro experiments performed on fresh porcine tissue. Results suggest that leaks occur between the tissue and staple legs penetrating through the tissue. KW - Anastomose KW - Finite-Elemente-Methode KW - Biomechanik KW - Anastomosis KW - Finite element method KW - Biomechanics Y1 - 2011 ER - TY - CHAP A1 - Frotscher, Ralf A1 - Koch, Jan-Peter A1 - Raatschen, Hans-Jürgen A1 - Staat, Manfred ED - Onate, E. T1 - Evaluation of a computational model for drug action on cardiac tissue T2 - 11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20 - 25, 2014, Barcelona Y1 - 2014 SP - 1 EP - 12 ER - TY - CHAP A1 - Jung, Alexander A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - Electromechanical model of hiPSC-derived ventricular cardiomyocytes cocultured with fibroblasts T2 - 6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK N2 - The CellDrum provides an experimental setup to study the mechanical effects of fibroblasts co-cultured with hiPSC-derived ventricular cardiomyocytes. Multi-scale computational models based on the Finite Element Method are developed. Coupled electrical cardiomyocyte-fibroblast models (cell level) are embedded into reaction-diffusion equations (tissue level) which compute the propagation of the action potential in the cardiac tissue. Electromechanical coupling is realised by an excitation-contraction model (cell level) and the active stress arising during contraction is added to the passive stress in the force balance, which determines the tissue displacement (tissue level). Tissue parameters in the model can be identified experimentally to the specific sample. Y1 - 2018 ER - TY - CHAP A1 - Staat, Manfred A1 - Heitzer, Michael A1 - Reinders, H. A1 - Schubert, F. T1 - Einspielen und Ratchetting bei Zug- und Torsionsbelastung: Analyse und Experimente T1 - Shakedown and ratchetting under tension-torsion loadings: analysis and experiments N2 - Traglast- und Einspielanalysen sind vereinfachte doch exakte Verfahren der klassischen Plastizitätstheorie, die neben ausreichender Verformbarkeit keine einschränkenden Voraussetzungen beinhalten. Die Vereinfachungen betreffen die Beschaffung der Daten und Modelle für Details der Lastgeschichte und des Stoffverhaltens. Eine FEM-basierte Traglast- und Einspielanalyse für ideal plastisches Material wurde auf ein kinematisch verfestigendes Materialgesetz erweitert und in das Finite Element Programm PERMAS implementiert. In einem einfachen Zug-Torsionsexperiment wurde eine Hohlprobe mit konstanter Torsion und zyklischer Zugbelastung beansprucht, um die neue Implementierung zu verifizieren. Es konnte gezeigt werden, dass die Einspielanalyse gut mit den experimentellen Ergebnissen übereinstimmt. Bei Verfestigung lassen sich wesentlich größere Sicherheiten nachweisen. Dieses Potential bedarf weiterer experimenteller Absicherung. Parallel dazu ist die Eisnpieltheorie auf fortschrittliche Verfestigungsansätze zu erweitern. KW - Zug-Druck-Beanspruchung KW - Einspielen KW - Ratcheting KW - Torsion KW - Zug-Druck-Belastung KW - Torsionsbelastung KW - shakedown KW - ratchetting KW - tension–torsion loading Y1 - 2001 ER -