TY - JOUR A1 - Özsoylu, Dua A1 - Kizildag, Sefa A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Differential chemical imaging of extracellular acidification within microfluidic channels using a plasma-functionalized light-addressable potentiometric sensor (LAPS) JF - Physics in Medicine N2 - Extracellular acidification is a basic indicator for alterations in two vital metabolic pathways: glycolysis and cellular respiration. Measuring these alterations by monitoring extracellular acidification using cell-based biosensors such as LAPS plays an important role in studying these pathways whose disorders are associated with numerous diseases including cancer. However, the surface of the biosensors must be specially tailored to ensure high cell compatibility so that cells can represent more in vivo-like behavior, which is critical to gain more realistic in vitro results from the analyses, e.g., drug discovery experiments. In this work, O2 plasma patterning on the LAPS surface is studied to enhance surface features of the sensor chip, e.g., wettability and biofunctionality. The surface treated with O2 plasma for 30 s exhibits enhanced cytocompatibility for adherent CHO–K1 cells, which promotes cell spreading and proliferation. The plasma-modified LAPS chip is then integrated into a microfluidic system, which provides two identical channels to facilitate differential measurements of the extracellular acidification of CHO–K1 cells. To the best of our knowledge, it is the first time that extracellular acidification within microfluidic channels is quantitatively visualized as differential (bio-)chemical images. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.phmed.2020.100030 SN - 2352-4510 VL - 10 IS - 100030 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Özsoylu, Dua A1 - Kizildag, Sefa A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Effect of plasma treatment on the sensor properties of a light‐addressable potentiometric sensor (LAPS) JF - physica status solidi a : applications and materials sciences N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment. Y1 - 2019 U6 - http://dx.doi.org/10.1002/pssa.201900259 SN - 1862-6319 N1 - Corresponding author: Torsten Wagner VL - 216 IS - 20 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Zatko, B. A1 - Dubecký, F. A1 - Bohacek, P. A1 - Gombia, E. A1 - Frigeri, P. A1 - Mosca, R. A1 - Franchi, S. A1 - Huarn, J. A1 - Nescas, V. A1 - Sekacova, M. A1 - Förster, Arnold A1 - Kordos, P. T1 - On the spectrometric performance limit of radiation detectors based on semi-insulating GaAs JF - Nuclear instruments and methods in physics research, Section A. 531 (2004), H. 1-2 Y1 - 2004 SN - 0168-9002 SP - 111 EP - 120 ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors (LAPS) for cell monitoring and biosensing JF - Current Opinion in Electrochemistry Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.coelec.2021.100727 SN - 2451-9103 IS - In Press, Journal Pre-proof PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Moritz, Werner A1 - Finger, Friedhelm A1 - Schöning, Michael Josef ED - Comini, Elisabetta T1 - Application of thin-film amorphous silicon to chemical imaging JF - Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A. Y1 - 2006 SN - 9781558998711 N1 - Materials Research Society symposia proceedings; v. 915 IS - Paper 0910-A-20-01 SP - 1 EP - 10 ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Werner, Frederik A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species JF - Annual Review of Analytical Chemistry N2 - A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed. Y1 - 2017 U6 - http://dx.doi.org/10.1146/annurev-anchem-061516-045158 SN - 1936-1327 VL - 10 SP - 225 EP - 246 PB - Annual Reviews CY - Palo Alto, Calif. ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor JF - Sensors and actuators B: Chemical N2 - The light-addressable potentiometric sensor (LAPS) is an electrochemical sensor with a field-effect structure to detect the variation of the Nernst potential at its sensor surface, the measured area on which is defined by illumination. Thanks to this light-addressability, the LAPS can be applied to chemical imaging sensor systems, which can visualize the two-dimensional distribution of a particular target ion on the sensor surface. Chemical imaging sensor systems are expected to be useful for analysis of reaction and diffusion in various electrochemical and biological samples. Recent developments of LAPS-based chemical imaging sensor systems, in terms of the spatial resolution, measurement speed, image quality, miniaturization and integration with microfluidic devices, are summarized and discussed. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.snb.2014.09.002 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 207, Part B SP - 926 EP - 932 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Field-effect sensors combined with the scanned light pulse technique: from artificial olfactory images to chemical imaging technologies JF - Chemosensors N2 - The artificial olfactory image was proposed by Lundström et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices. KW - visualization KW - light-addressing technologies KW - scanned light pulse technique KW - field-effect structure KW - MOS KW - metal-oxide-semiconductor structure KW - catalytic metal KW - electronic nose KW - gas sensor KW - artificial olfactory image Y1 - 2024 U6 - http://dx.doi.org/10.3390/chemosensors12020020 SN - 2227-9040 N1 - This article belongs to the Special Issue "An Exciting Journey of Chemical Sensors and Biosensors: A Theme Issue in Honor of Professor Ingemar Lundström" Corresponding author: Tatsuo Yoshinobu, Michael J. Schöning VL - 12 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Yoshinobu, T. A1 - Yasuhito, U. A1 - Iwasaki, H. A1 - Näther, Niko A1 - Schöning, Michael Josef A1 - Koudelka-Hep, M. T1 - Applications of the light-addressable potentiometric sensor to microfluidic devices JF - Digest of technical papers : September 12 - 15, 2004, Rome, Italy, Pontificia Universitas Sancto Thoma Aquinate in Urbe / [conference chairperson: C. Di Natale]. Y1 - 2004 SN - 88-7621-282-5 N1 - Eurosensors ; (18, 2004, Roma) SP - 434 EP - 437 CY - Roma ER - TY - JOUR A1 - Yoshinobu, T. A1 - Ui, Y. A1 - Iwasaki, H. A1 - Näther, Niko A1 - Koudelka-Hep, M. A1 - Schöning, Michael Josef T1 - Potentiometric imaging in a microfluidic channel JF - Biomedizinische Technik. 49 (2004), H. 2 Y1 - 2004 SN - 0932-4666 SP - 998 EP - 999 ER - TY - JOUR A1 - Yoshinobu, T. A1 - Schöning, Michael Josef A1 - Otto, R. A1 - Furuichi, K. A1 - Mourzina, Yu A1 - Ermelenko, Yu A1 - Iwasaki, I. T1 - Portable light-addressable potentiometric sensor (LAPS) for multisensor applications JF - Book of abstracts / ed. by J. Saneistr. Y1 - 2002 SN - 80-01-02576-4 N1 - Eurosensors ; (16, 2002, Praha) SP - 898 EP - 901 PB - Czech Technical University, Faculty of Electrical Engineering, Department of Measurement CY - Prague ER - TY - JOUR A1 - Yoshinobu, T. A1 - Schöning, Michael Josef A1 - Otto, R. A1 - Furuichi, K. A1 - Mourzina, Y. A1 - Ermelenko, Y. A1 - Iwasaki, H. T1 - Portable light-addressable potentiometric sensor (LAPS) for multisensor applications JF - Sensors and Actuators B. 95 (2003), H. 1-3 Y1 - 2003 SN - 0925-4005 SP - 352 EP - 356 ER - TY - JOUR A1 - Yoshinobu, T. A1 - Schöning, Michael Josef A1 - Finger, F. A1 - Moritz, W. A1 - Iwasaki, H. T1 - Fabrication of thin-film LAPS with amorphous silicon JF - Sensors. 4 (2004), H. 10 Y1 - 2004 SN - 1424-8220 SP - 163 EP - 169 ER - TY - JOUR A1 - Yoshinobu, T. A1 - Iwasaki, H. A1 - Ui, Y. A1 - Furuichi, K. A1 - Ermelenko, Y. A1 - Mourzina, Y. A1 - Wagner, Torsten A1 - Näther, Niko A1 - Schöning, Michael Josef T1 - The light-addressable potentiometric sensor for multi-ion sensing and imaging JF - Methods. 37 (2005), H. 1 Y1 - 2005 SN - 1046-2023 SP - 99 EP - 102 ER - TY - JOUR A1 - Yoshinobu, T. A1 - Ermelenko, Y. A1 - Mourzina, Y. A1 - Schöning, Michael Josef A1 - Iwasaki, H. A1 - Vlasov, Y. T1 - Multi-component analysis based on the light-addressable potentiometric sensor (LAPS) JF - Proceedings : 11th international conference Sensor 2003; 13 - 15 May 2003, Exhibition Centre Nuremberg, Germany Y1 - 2003 N1 - Internationale Messe mit Kongress Sensor <11, 2003, Nürnberg> SP - 141 EP - 144 PB - AMA Service CY - Wunstorf ER - TY - JOUR A1 - Yoshinobu, T. A1 - Ecken, H. A1 - Poghossian, Arshak A1 - Simonis, A. A1 - Iwasaki, H. A1 - Lüth, H. A1 - Schöning, Michael Josef T1 - Constant-current-mode LAPS (CLAPS) for the detection of penicillin JF - Electroanalysis. 13 (2001), H. 8-9 Y1 - 2001 SN - 1040-0397 SP - 733 EP - 736 ER - TY - JOUR A1 - Yoshinobu, T. A1 - Ecken, H. A1 - Poghossian, Arshak A1 - Lüth, H. A1 - Iwasaki, H. A1 - Schöning, Michael Josef T1 - Alternative sensor materials for light-addressable potentiometric sensors JF - Sensors and Actuators B. 76 (2001), H. 1-3 Y1 - 2001 SN - 0925-4005 SP - 388 EP - 392 ER - TY - JOUR A1 - Yoshinobu, T. A1 - Ecken, H. A1 - Ismail, Md.A.B. A1 - Iwasaki, H. A1 - Lüth, H. A1 - Schöning, Michael Josef T1 - Chemical imaging sensor and its application to biological systems JF - Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz Y1 - 2001 SN - 0-08-044014-2 SP - 259 EP - 263 PB - Elsevier [u.a.] CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Bronder, Thomas A1 - Schöning, Michael Josef T1 - Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor JF - Sensors and Actuators B: Chemical N2 - A multi-spot light-addressable potentiometric sensor (LAPS), which belongs to the family of semiconductor field-effect devices, was applied for label-free detection of double-stranded deoxyribonucleic acid (dsDNA) molecules by their intrinsic molecular charge. To reduce the distance between the DNA charge and sensor surface and thus, to enhance the electrostatic coupling between the dsDNA molecules and the LAPS, the negatively charged dsDNA molecules were electrostatically adsorbed onto the gate surface of the LAPS covered with a positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)). The surface potential changes in each spot of the LAPS, induced by the layer-by-layer adsorption of a PAH/dsDNA bilayer, were recorded by means of photocurrent-voltage and constant-photocurrent measurements. In addition, the surface morphology of the gate surface before and after consecutive electrostatic adsorption of PAH and dsDNA layers was studied by atomic force microscopy measurements. Moreover, fluorescence microscopy was used to verify the successful adsorption of dsDNA molecules onto the PAH-modified LAPS surface. A high sensor signal of 25 mV was registered after adsorption of 10 nM dsDNA molecules. The lower detection limit is down to 0.1 nM dsDNA. The obtained results demonstrate that the PAH-modified LAPS device provides a convenient and rapid platform for the direct label-free electrical detection of in-solution hybridized dsDNA molecules. KW - Layer-by-layer adsorption KW - Poly(allylamine hydrochloride) KW - Label-free detection KW - DNA biosensor KW - LAPS KW - Field effect Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.snb.2016.02.004 SN - 0925-4005 IS - 229 SP - 506 EP - 512 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wu, Chunsheng A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Schöning, Michael Josef T1 - Label-free detection of DNA using light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer JF - Nanoscale N2 - A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al–p-Si–SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent–voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout. Y1 - 2015 U6 - http://dx.doi.org/10.1039/C4NR07225A VL - 14 IS - 7 SP - 6143 EP - 6150 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER -