TY - JOUR A1 - Schusser, Sebastian A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Krischer, M. A1 - Leinhos, Marcel A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - An application of field-effect sensors for in-situ monitoring of degradation of biopolymers JF - Sensors and actuators B: Chemical N2 - The characterization of the degradation kinetics of biodegradable polymers is mandatory with regard to their proper application. In the present work, polymer-modified electrolyte–insulator–semiconductor (PMEIS) field-effect sensors have been applied for in-situ monitoring of the pH-dependent degradation kinetics of the commercially available biopolymer poly(d,l-lactic acid) (PDLLA) in buffer solutions from pH 3 to pH 13. PDLLA films of 500 nm thickness were deposited on the surface of an Al–p-Si–SiO2–Ta2O5 structure from a polymer solution by means of spin-coating method. The PMEIS sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. A faster degradation has been observed for PDLLA films exposed to alkaline solutions (pH 9, pH 11 and pH 13). Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.snb.2014.10.058 SN - 1873-3077 (E-Journal); 0925-4005 (Print) VL - 207, Part B SP - 954 EP - 959 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamato, Ko-ichiro A1 - Sakakita, Sakura A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface JF - Electrochimica Acta N2 - The chemical imaging sensor was applied to in-situ pH imaging of the solution in the vicinity of a corroding surface of stainless steel under potentiostatic polarization. A test piece of polished stainless steel was placed on the sensing surface leaving a narrow gap filled with artificial seawater and the stainless steel was corroded under polarization. The pH images obtained during polarization showed correspondence between the region of lower pH and the site of corrosion. It was also found that the pH value in the gap became as low as 2 by polarization, which triggered corrosion. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.electacta.2015.07.184 SN - 0013-4686 VL - 183 SP - 137 EP - 142 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Molinnus, Denise A1 - Bäcker, Matthias A1 - Iken, Heiko A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Concept for a biomolecular logic chip with an integrated sensor and actuator function JF - Physica status solidi (a) N2 - A concept for a new generation of an integrated multi-functional biosensor/actuator system is developed, which is based on biomolecular logic principles. Such a system is expected to be able to detect multiple biochemical input signals simultaneously and in real-time and convert them into electrical output signals with logical operations such as OR, AND, etc. The system can be designed as a closed-loop drug release device triggered by an enzyme logic gate, while the release of the drug induced by the actuator at the required dosage and timing will be controlled by an additional drug sensor. Thus, the system could help to make an accurate and specific diagnosis. The presented concept is exemplarily demonstrated by using an enzyme logic gate based on a glucose/glucose oxidase system, a temperature-responsive hydrogel mimicking the actuator function and an insulin (drug) sensor. In this work, the results of functional testing of individual amperometric glucose and insulin sensors as well as an impedimetric sensor for the detection of the hydrogel swelling/shrinking are presented. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431913 SN - 1862-6319 VL - 212 IS - 6 SP - 1382 EP - 1388 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Molinnus, Denise A1 - Bäcker, Matthias A1 - Siegert, Petra A1 - Willenberg, H. A1 - Poghossian, Arshak A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Detection of Adrenaline Based on Substrate Recycling Amplification JF - Procedia Engineering N2 - An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.708 SN - 1877-7058 N1 - Eurosensors 2015 VL - 120 SP - 540 EP - 543 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Warmer, Johannes A1 - Wagner, Patrick A1 - Schöning, Michael Josef A1 - Kaul, Peter T1 - Detection of triacetone triperoxide using temperature cycled metal-oxide semiconductor gas sensors JF - Physica status solidi (a) Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431882 SN - 1862-6319 VL - 212 IS - 6 SP - 1289 EP - 1298 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pilas, Johanna A1 - Iken, Heiko A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Development of a multi‐parameter sensor chip for the simultaneous detection of organic compounds in biogas processes JF - Physica status solidi (a) N2 - An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431894 SN - 1862-6319 VL - 212 IS - 6 SP - 1306 EP - 1312 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Scheja, Sabrina A1 - Wu, Chunsheng A1 - Keusgen, Michael A1 - Mewes, Dieter A1 - Schöning, Michael Josef T1 - DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer JF - Applied Materials & Interfaces N2 - Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte–insulator–semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance–voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event. Y1 - 2015 U6 - http://dx.doi.org/10.1021/acsami.5b05146 VL - 36 IS - 7 SP - 20068 EP - 20075 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Scheja, S. A1 - Wu, Chunsheng A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Electrostatic Detection of Unlabelled Single- and Double-stranded DNA Using Capacitive Field-effect Devices Functionalized with a Positively Charged Polyelectrolyte Layer JF - Procedia Engineering N2 - Capacitive field-effect electrolyte-insulator-semiconductor sensors consisting of an Al-p-Si-SiO2 structure have been used for the electrical detection of unlabelled single- and double-stranded DNA (dsDNA) molecules by their intrinsic charge. A simple functionalization protocol based on the layer-by-layer (LbL) technique was used to prepare a weak polyelectrolyte/probe-DNA bilayer, followed by the hybridization with complementary target DNA molecules. Due to the flat orientation of the LbL-adsorbed DNA molecules, a high sensor signal has been achieved. In addition, direct label-free detection of in-solution hybridized dsDNA molecules has been studied. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.710 SN - 1877-7058 N1 - Eurosensors 2015 VL - 120 SP - 544 EP - 547 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Enzyme logic AND-Reset and OR-Reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane JF - Chemical Communications N2 - Capacitive field-effect sensors modified with a multi-enzyme membrane have been applied for an electronic transduction of biochemical signals processed by enzyme-based AND-Reset and OR-Reset logic gates. The local pH change at the sensor surface induced by the enzymatic reaction was used for the activation of the Reset function for the first time. Y1 - 2015 U6 - http://dx.doi.org/10.1039/C5CC01362C VL - 51 SP - 6564 EP - 6567 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Takenaga, Shoko A1 - Schneider, Benno A1 - Erbay, E. A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Schöning, Michael Josef A1 - Wagner, Torsten T1 - Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process JF - Physica status solidi (a) N2 - A new microfluidic assembly method for semiconductor-based biosensors using 3D-printing technologies was proposed for a rapid and cost-efficient design of new sensor systems. The microfluidic unit is designed and printed by a 3D-printer in just a few hours and assembled on a light-addressable potentiometric sensor (LAPS) chip using a photo resin. The cell growth curves obtained from culturing cells within microfluidics-based LAPS systems were compared with cell growth curves in cell culture flasks to examine biocompatibility of the 3D-printed chips. Furthermore, an optimal cell culturing within microfluidics-based LAPS chips was achieved by adjusting the fetal calf serum concentrations of the cell culture medium, an important factor for the cell proliferation. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201532053 SN - 1862-6319 VL - 212 IS - 6 SP - 1347 EP - 1352 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Mayer, Dirk A1 - Schöning, Michael Josef T1 - Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids JF - Nanoscale Y1 - 2015 U6 - http://dx.doi.org/10.1039/C4NR05987E SN - 2040-3372 (E-Journal); 2040-3364 (Print) SP - 1023 EP - 1031 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Delle, Lotta E. A1 - Huck, Christina A1 - Bäcker, Matthias A1 - Müller, Frank A1 - Grandthyll, Samuel A1 - Jacobs, Karin A1 - Lilischkis, Rainer A1 - Vu, Xuan T. A1 - Schöning, Michael Josef A1 - Wagner, Patrick A1 - Thoelen, Roland A1 - Weil, Maryam A1 - Ingebrandt, Sven T1 - Impedimetric immunosensor for the detection of histamine based on reduced graphene oxide JF - Physica status solidi (a) Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431863 SN - 1862-6319 VL - 212 IS - 6 SP - 1327 EP - 1334 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Wu, Chunsheng A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Schöning, Michael Josef T1 - Label-free detection of DNA using light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer JF - Nanoscale N2 - A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al–p-Si–SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent–voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout. Y1 - 2015 U6 - http://dx.doi.org/10.1039/C4NR07225A VL - 14 IS - 7 SP - 6143 EP - 6150 PB - Royal Society of Chemistry (RSC) CY - Cambridge ER - TY - JOUR A1 - Dantism, S. A1 - Takenaga, S. A1 - Wagner, P. A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable Potentiometric Sensor (LAPS) Combined with Multi-chamber Structures to Investigate the Metabolic Activity of Cells JF - Procedia Engineering N2 - LAPS are field-effect-based potentiometric sensors which are able to monitor analyte concentrations in a spatially resolved manner. Hence, a LAPS sensor system is a powerful device to record chemical imaging of the concentration of chemical species in an aqueous solution, chemical reactions, or the growth of cell colonies on the sensor surface, to record chemical images. In this work, multi-chamber 3D-printed structures made out of polymer (PP-ABS) were combined with LAPS chips to analyse differentially and simultaneously the metabolic activity of Escherichia coli K12 and Chinese hamster ovary (CHO) cells, and the responds of those cells to the addition of glucose solution. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.647 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 384 EP - 387 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Breuer, Lars A1 - Raue, Markus A1 - Kirschbaum, M. A1 - Mang, Thomas A1 - Schöning, Michael Josef A1 - Thoelen, R. A1 - Wagner, Torsten T1 - Light-controllable polymeric material based on temperature-sensitive hydrogels with incorporated graphene oxide JF - Physica status solidi (a) N2 - Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel films with incorporated graphene oxide (GO) were developed and tested as light-stimulated actuators. GO dispersions were synthesized via Hummers method and characterized toward their optical properties and photothermal energy conversion. The hydrogels were prepared by means of photopolymerization. In addition, the influence of GO within the hydrogel network on the lower critical solution temperature (LCST) was investigated by differential scanning calorimetry (DSC). The optical absorbance and the response to illumination were determined as a function of GO concentration for thin hydrogel films. A proof of principle for the stimulation with light was performed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431944 SN - 1862-6319 VL - 212 IS - 6 SP - 1368 EP - 1374 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Schusser, Sebastian A1 - Krischer, Maximillian A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors JF - Analytical Chemistry N2 - Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte–insulator–semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(d,l-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers. Y1 - 2015 U6 - http://dx.doi.org/10.1021/acs.analchem.5b00617 SN - 1520-6882 VL - 87 IS - 13 SP - 6607 EP - 6613 PB - ACS Publications CY - Washington, DC ER - TY - JOUR A1 - Huck, Christina A1 - Poghossian, Arshak A1 - Bäcker, Matthias A1 - Reisert, Steffen A1 - Kramer, Friederike A1 - Begoyan, Vardges K. A1 - Buniatyan, Vahe V. A1 - Schöning, Michael Josef T1 - Multi-parameter sensing using high-k oxide of barium strontium titanate JF - Physica status solidi (a) N2 - High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors. In this work, a Si-based sensor chip containing Pt interdigitated electrodes covered with a thin BST layer (485 nm) has been developed for multi-parameter chemical sensing. The chip has been applied for the contactless measurement of the electrolyte conductivity, the detection of adsorbed charged macromolecules (positively charged polyelectrolytes of polyethylenimine) and the concentration of hydrogen peroxide (H2O2) vapor. The experimental results of functional testing of individual sensors are presented. The mechanism of the BST sensitivity to charged polyelectrolytes and H2O2 vapor has been proposed and discussed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/pssa.201431911 SN - 1862-6319 VL - 212 IS - 6 SP - 1259 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Reisert, Steffen A1 - Geissler, H. A1 - Weiler, C. A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - Multiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes JF - Food control N2 - The present work describes a novel multiple sensor-type system for the real-time analysis of aseptic sterilisation processes employing gaseous hydrogen peroxide (H2O2) as a sterilant. The inactivation kinetics of Bacillus atrophaeus by gaseous H2O2 have been investigated by means of a methodical calibration experiment, taking into account the process variables H2O2 concentration, humidity and gas temperature. It has been found that the microbicidal effectiveness at H2O2 concentrations above 2% v/v is largely determined by the concentration itself, while at lower H2O2 concentrations, the gas temperature and humidity play a leading role. Furthermore, the responses of different types of gas sensors towards the influencing factors of the sterilisation process have been analysed within the same experiment. Based on a correlation established between the inactivation kinetics and the sensor responses, a calorimetric H2O2 sensor and a metal-oxide semiconductor (MOX) sensor have been identified as possible candidates for monitoring the microbicidal effectiveness of aseptic sterilisation processes employing gaseous H2O2. Therefore, two linear models that describe the relationship between sensor response and microbicidal effectiveness have been proposed. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.foodcont.2014.07.063 SN - 1873-7129 (E-Journal); 0956-7135 (Print) VL - 47 SP - 615 EP - 622 ER - TY - JOUR A1 - Pilas, Johanna A1 - Mariano, K. A1 - Keusgen, M. A1 - Selmer, Thorsten A1 - Schöning, Michael Josef T1 - Optimization of an Enzyme-based Multi-parameter Biosensor for Monitoring Biogas Processes JF - Procedia Engineering Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.proeng.2015.08.702 SN - 1877-7058 N1 - Part of special issue "Eurosensors 2015" VL - 120 SP - 532 EP - 535 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Murib, M. S. A1 - Yeap, W. S. A1 - Martens, D. A1 - Liu, X. A1 - Bienstman, P. A1 - Fahlman, M. A1 - Schöning, Michael Josef A1 - Michiels, L. A1 - Haenen, K. A1 - Serpengüzel, A. A1 - Wagner, Patrick T1 - Photonic studies on polymer-coated sapphire-spheres : a model system for biological ligands JF - Sensors and actuators A: Physical N2 - In this study we show an optical biosensor concept, based on elastic light scattering from sapphire microspheres. Transmitted and elastic scattering intensity of the microspheres (radius 500 μm, refractive index 1.77) on an optical fiber half coupler is analyzed at 1510 nm. The 0.43 nm angular mode spacing of the resonances is comparable to the angular mode spacing value estimated using the optical size of the microsphere. The spectral linewidths of the resonances are in the order of 0.01 nm, which corresponds to quality factors of approximately 105. A polydopamine layer is used as a functionalizing agent on sapphire microspherical resonators in view of biosensor implementation. The varying layer thickness on the microsphere is determined as a function of the resonance wavelength shift. It is shown that polymer functionalization has a minor effect on the quality factor. This is a promising step toward the development of an optical biosensor. Y1 - 2015 U6 - http://dx.doi.org/10.1016/j.sna.2014.11.024 SN - 1873-3069 (E-Journal); 0924-4247 (Print) VL - 222 SP - 212 EP - 219 PB - Elsevier CY - Amsterdam ER -