TY - JOUR A1 - Staat, Manfred A1 - Heitzer, M. T1 - FEM-computation of load carrying capacity of highly loaded passive components by direct methods. Heitzer, M. ; Staat, M. JF - Nuclear Engineering and Design. 193 (1999), H. 3 Y1 - 1999 SN - 0029-5493 SP - 349 EP - 358 ER - TY - JOUR A1 - Staat, Manfred A1 - Heitzer, M. T1 - Traglastanalyse - ein strukturmechanisches Verfahren zur Beurteilung von gerissenen Bauteilen und Verbindungen JF - Festigkeits- und Bruchverhalten von Fügeverbindungen : 32. Tagung des DVM-Arbeitskreises Bruchvorgänge ; 22. und 23. Februar 2000 in Berlin / Richard, H. A. [Hrsg] Y1 - 2000 N1 - DVM-Bericht 232 SP - 183 EP - 192 PB - Deutscher Verband für Materialforschung und -prüfung CY - Berlin ER - TY - JOUR A1 - Staat, Manfred A1 - Heitzer, M. T1 - Reliability Analysis of Elasto-Plastic Structures under Variable Loads JF - Inelastic analysis of structures under variable loads : theory and engineering applications / Maier, G.; Weichert, D. [ed] Y1 - 2000 SN - 0-7923-6645-X SP - 269 EP - 288 PB - Kluwer Academic Publ. CY - Dordrecht ER - TY - JOUR A1 - Staat, Manfred A1 - Heitzer, M. T1 - Direct FEM approach to design-by-analysis of pressurized components JF - Achema 2000 : Sonderausgabe / Linde. [Hrsg.: Linde AG. Red.: Volker R. Leski] Y1 - 2000 SP - 79 EP - 81 PB - Linde AG CY - Wiesbaden ER - TY - JOUR A1 - Staat, Manfred T1 - Basis Reduction for the Shakedown Problem for Bounded Kinematic Hardening Material N2 - Limit and shakedown analysis are effective methods for assessing the load carrying capacity of a given structure. The elasto–plastic behavior of the structure subjected to loads varying in a given load domain is characterized by the shakedown load factor, defined as the maximum factor which satisfies the sufficient conditions stated in the corresponding static shakedown theorem. The finite element dicretization of the problem may lead to very large convex optimization. For the effective solution a basis reduction method has been developed that makes use of the special problem structure for perfectly plastic material. The paper proposes a modified basis reduction method for direct application to the two-surface plasticity model of bounded kinematic hardening material. The considered numerical examples show an enlargement of the load carrying capacity due to bounded hardening. KW - Finite-Elemente-Methode KW - Einspielen KW - Basis Reduktion KW - konvexe Optimierung KW - FEM KW - Druckgeräte KW - Basis reduction KW - Convex optimization KW - FEM KW - Shakedown analysis Y1 - 2000 ER - TY - JOUR A1 - Staat, Manfred T1 - Direct FEM Limit and Shakedown Analysis with Uncertain Data N2 - The structural reliability with respect to plastic collapse or to inadaptation is formulated on the basis of the lower bound limit and shakedown theorems. A direct definition of the limit state function is achieved which permits the use of the highly effective first order reliability methods (FORM) is achieved. The theorems are implemented into a general purpose FEM program in a way capable of large-scale analysis. The limit state function and its gradient are obtained from a mathematical optimization problem. This direct approach reduces considerably the necessary knowledge of uncertain technological input data, the computing time, and the numerical error, leading to highly effective and precise reliability analyses. KW - Finite-Elemente-Methode KW - Einspielen KW - FEM KW - Einspielanalyse KW - shakedown KW - limit load KW - reliability analysis KW - FEM KW - direct method Y1 - 2000 ER - TY - JOUR A1 - Staat, Manfred T1 - Cyclic plastic deformation tests to verify FEM-based shakedown analyses N2 - Fatigue analyses are conducted with the aim of verifying that thermal ratcheting is limited. To this end it is important to make a clear distintion between the shakedown range and the ratcheting range (continuing deformation). As part of an EU-supported research project, experiments were carried out using a 4-bar model. The experiment comprised a water-cooled internal tube, and three insulated heatable outer test bars. The system was subjected to alternating axial forces, superimposed with alternating temperatures at the outer bars. The test parameters were partly selected on the basis of previous shakedown analyses. During the test, temperatures and strains were measured as a function of time. The loads and the resulting stresses were confirmed on an ongoing basis during performance of the test, and after it. Different material models were applied for this incremental elasto-plastic analysis using the ANSYS program. The results of the simulation are used to verify the FEM-based shakedown analysis. KW - Materialermüdung KW - Einspielen KW - Materialermüdung KW - shakedown analyses KW - thermal ratcheting KW - fatigue analyses Y1 - 2001 ER - TY - JOUR A1 - Staat, Manfred T1 - LISA - a European project for FEM-based limit and shakedown analysis N2 - The load-carrying capacity or the safety against plastic limit states are the central questions in the design of structures and passive components in the apparatus engineering. A precise answer is most simply given by limit and shakedown analysis. These methods can be based on static and kinematic theorems for lower and upper bound analysis. Both may be formulated as optimization problems for finite element discretizations of structures. The problems of large-scale analysis and the extension towards realistic material modelling will be solved in a European research project. Limit and shakedown analyses are briefly demonstrated with illustrative examples. KW - Einspielen KW - Traglast KW - Finite-Elemente-Methode KW - Traglastanalyse KW - Einspielanalyse KW - FEM KW - limit analysis KW - shakedown analysis Y1 - 2001 ER - TY - JOUR A1 - Staat, Manfred T1 - Some Achievements of the European Project LISA for FEM Based Limit and Shakedown Analysis JF - Computational mechanics : developments and applications, 2002 : presented at the 2002 ASME Pressure Vessels and Piping Conference, Vancouver, British Columbia, Canada, August 5 - 9. / Badie, N. [ed] Y1 - 2002 SN - 0791846520 N1 - Serie PVP ; vol. 441. SP - 177 EP - 185 PB - American Society of Mechanical Engineers CY - New York ER - TY - JOUR A1 - Staat, Manfred A1 - Heitzer, M. T1 - Limit and Shakedown Analysis with Uncertain Data JF - Stochastic optimization techniques : numerical methods and technical applications / Marti, K. [ed] Y1 - 2002 SN - 3-540-42889-5 SP - 241 EP - 254 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Staat, Manfred A1 - Heitzer, M. A1 - Reiners, H. A1 - Schubert, F. T1 - Shakedown and ratchetting under tension–torsion loadings: analysis and experiments JF - Nuclear Engineering and Design. 225 (2003), H. 1 Y1 - 2003 SN - 0029-5493 SP - 11 EP - 26 ER - TY - JOUR A1 - Staat, Manfred A1 - Schwartz, M. A1 - Lang, H. A1 - Wirtz, K. A1 - Heitzer, M. T1 - Design by Analysis of Pressure Components by non-linear Optimization JF - The 10th International Conference on Pressure Vessel Technology, July 7-10, 2003, Vienna, Austria, Proceedings ICPVT-10 / Zeman, J. L. [ed] Y1 - 2003 SN - 3950152814 SP - 59 EP - 65 PB - ÖGS, Österreichische Gesellschaft für Schweißtechnik CY - Wien ER - TY - JOUR A1 - Staat, Manfred A1 - Heitzer, M. T1 - Probabilistic limit and shakedown problems JF - Numerical Methods for Limit and Shakedown Analysis. Deterministic and Probabilistic Approach. NIC Series Vol. 15 / Ed. by Staat, M; Heitzer, M. Y1 - 2003 SN - 3-00-010001-6 SP - 217 EP - 268 PB - John von Neumann Institute for Computing (NIC) CY - Jülich ER - TY - JOUR A1 - Staat, Manfred T1 - Shakedown and ratchetting under tension-torsion loadings: analysis and experiments N2 - Structural design analyses are conducted with the aim of verifying the exclusion of ratchetting. To this end it is important to make a clear distinction between the shakedown range and the ratchetting range. The performed experiment comprised a hollow tension specimen which was subjected to alternating axial forces, superimposed with constant moments. First, a series of uniaxial tests has been carried out in order to calibrate a bounded kinematic hardening rule. The load parameters have been selected on the basis of previous shakedown analyses with the PERMAS code using a kinematic hardening material model. It is shown that this shakedown analysis gives reasonable agreement between the experimental and the numerical results. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis. KW - Einspielen KW - Einspielen KW - Ratchetting KW - Zug-Druck Belastung KW - shakedown KW - ratchetting KW - tension–torsion loading Y1 - 2003 ER - TY - JOUR A1 - Staat, Manfred T1 - Plastic collapse analysis of longitudinally flawed pipes and vessels JF - Nuclear Engineering and Design. 234 (2004), H. 1-3 Y1 - 2004 SN - 0029-5493 SP - 25 EP - 43 ER - TY - JOUR A1 - Staat, Manfred A1 - Kühn, R. A1 - Hauger, W. A1 - Sponagel, Stefan T1 - An Interpretation of Wolff’s Law JF - Biomedizinische Technik. 49 (2004) Y1 - 2004 SN - 0932-4666 N1 - Ergänzungsband 2, Teil 2 SP - 1020 EP - 1021 ER - TY - JOUR A1 - Staat, Manfred A1 - Vu, Duc-Khoi T1 - An Algorithm for Shakedown Analysis for Materials with Temperature Dependent Yield Stress JF - Proceedings in Applied Mathematics and Mechanics (PAMM). 4 (2004), H. 1 Y1 - 2004 SN - 1617-7061 SP - 231 EP - 233 ER - TY - JOUR A1 - Staat, Manfred T1 - Plastic collapse analysis of longitudinally flawed pipes and vessels N2 - Improved collapse loads of thick-walled, crack containing pipes and vessels are suggested. Very deep cracks have a residual strength which is better modelled by a global limit load. In all burst tests, the ductility of pressure vessel steels was sufficiently high whereby the burst pressure could be predicted by limit analysis with no need to apply fracture mechanics. The relative prognosis error increases however, for long and deep defects due to uncertainties of geometry and strength data. KW - Druckbehälter KW - Stahl KW - Druckbelastung KW - Druckbeanspruchung KW - Rohr KW - Rohrbruch KW - Druckbehälter KW - Stahl KW - Druckbelastung KW - Druckbeanspruchung KW - Rohrbruch KW - Fehlerstellen KW - pipes KW - vessels KW - load limit KW - burst tests KW - burst pressure KW - flaw Y1 - 2004 ER - TY - JOUR A1 - Vu, Duc-Khoi A1 - Staat, Manfred T1 - An algorithm for shakedown analysis of structure with temperature dependent yield stress N2 - This work is an attempt to answer the question: How to use convex programming in shakedown analysis of structures made of materials with temperature-dependent properties. Based on recently established shakedown theorems and formulations, a dual relationship between upper and lower bounds of the shakedown limit load is found, an algorithmfor shakedown analysis is proposed. While the original problem is neither convex nor concave, the algorithm presented here has the advantage of employing convex programming tools. KW - Einspielen KW - Temperaturabhängigkeit KW - Fließgrenze KW - Shakedown KW - shakedown analysis KW - yield stress Y1 - 2004 ER - TY - JOUR A1 - Kühn, Raoul-Roman A1 - Haugner, Werner A1 - Staat, Manfred A1 - Sponagel, Stefan T1 - A Two Phase Mixture Model based on Bone Observation N2 - An optimization method is developed to describe the mechanical behaviour of the human cancellous bone. The method is based on a mixture theory. A careful observation of the behaviour of the bone material leads to the hypothesis that the bone density is controlled by the principal stress trajectories (Wolff’s law). The basic idea of the developed method is the coupling of a scalar value via an eigenvalue problem to the principal stress trajectories. On the one hand this theory will permit a prediction of the reaction of the biological bone structure after the implantation of a prosthesis, on the other hand it may be useful in engineering optimization problems. An analytical example shows its efficiency. KW - Knochen KW - Knochenbildung KW - Knochenchirugie KW - Strukturanalyse KW - Schwammknochen KW - Knochendichte KW - Wolffsches Gesetz KW - bone structure KW - bone density KW - Wolff's Law KW - cancellous bone Y1 - 2004 ER -