TY - CHAP A1 - Niederwestberg, Stefan A1 - Schneider, Falko A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Introduction to a direct irradiated transparent tube particle receiver T2 - SOLARPACES 2020 N2 - New materials often lead to innovations and advantages in technical applications. This also applies to the particle receiver proposed in this work that deploys high-temperature and scratch resistant transparent ceramics. With this receiver design, particles are heated through direct-contact concentrated solar irradiance while flowing downwards through tubular transparent ceramics from top to bottom. In this paper, the developed particle receiver as well as advantages and disadvantages are described. Investigations on the particle heat-up characteristics from solar irradiance were carried out with DEM simulations which indicate that particle temperatures can reach up to 1200 K. Additionally, a simulation model was set up for investigating the dynamic behavior. A test receiver at laboratory scale has been designed and is currently being built. In upcoming tests, the receiver test rig will be used to validate the simulation results. The design and the measurement equipment is described in this work. KW - Solar irradiance KW - Ceramics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - http://dx.doi.org/10.1063/5.0086735 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September–2 October 2020 Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Caminos, Ricardo Alexander Chico A1 - Schmitz, Pascal A1 - Atti, Vikrama A1 - Mahdi, Zahra A1 - Teixeira Boura, Cristiano José A1 - Sattler, Johannes Christoph A1 - Herrmann, Ulf A1 - Hilger, Patrick A1 - Dieckmann, Simon T1 - Development of a micro heliostat and optical qualification assessment with a 3D laser scanning method T2 - SOLARPACES 2020 N2 - The Solar-Institut Jülich (SIJ) and the companies Hilger GmbH and Heliokon GmbH from Germany have developed a small-scale cost-effective heliostat, called “micro heliostat”. Micro heliostats can be deployed in small-scale concentrated solar power (CSP) plants to concentrate the sun's radiation for electricity generation, space or domestic water heating or industrial process heat. In contrast to conventional heliostats, the special feature of a micro heliostat is that it consists of dozens of parallel-moving, interconnected, rotatable mirror facets. The mirror facets array is fixed inside a box-shaped module and is protected from weathering and wind forces by a transparent glass cover. The choice of the building materials for the box, tracking mechanism and mirrors is largely dependent on the selected production process and the intended application of the micro heliostat. Special attention was paid to the material of the tracking mechanism as this has a direct influence on the accuracy of the micro heliostat. The choice of materials for the mirror support structure and the tracking mechanism is made in favor of plastic molded parts. A qualification assessment method has been developed by the SIJ in which a 3D laser scanner is used in combination with a coordinate measuring machine (CMM). For the validation of this assessment method, a single mirror facet was scanned and the slope deviation was computed. KW - Concentrated solar power KW - Electricity generation KW - Measuring instruments KW - Heliostats KW - Global change Y1 - 2022 SN - 978-0-7354-4195-8 U6 - http://dx.doi.org/10.1063/5.0086262 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September–2 October 2020 Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Zahra, Mahdi A1 - Phani Srujan, Merige A1 - Caminos, Ricardo Alexander Chico A1 - Schmitz, Pascal A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Gedle, Yibekal A1 - Dersch, Jürgen T1 - Modeling the thermal behavior of solar salt in electrical resistance heaters for the application in PV-CSP hybrid power plants T2 - SOLARPACES 2020 N2 - Concentrated Solar Power (CSP) systems are able to store energy cost-effectively in their integrated thermal energy storage (TES). By intelligently combining Photovoltaics (PV) systems with CSP, a further cost reduction of solar power plants is expected, as well as an increase in dispatchability and flexibility of power generation. PV-powered Resistance Heaters (RH) can be deployed to raise the temperature of the molten salt hot storage from 385 °C up to 565 °C in a Parabolic Trough Collector (PTC) plant. To avoid freezing and decomposition of molten salt, the temperature distribution in the electrical resistance heater is investigated in the present study. For this purpose, a RH has been modeled and CFD simulations have been performed. The simulation results show that the hottest regions occur on the electric rod surface behind the last baffle. A technical optimization was performed by adjusting three parameters: Shell-baffle clearance, electric rod-baffle clearance and number of baffles. After the technical optimization was carried out, the temperature difference between the maximum temperature and the average outlet temperature of the salt is within the acceptable limits, thus critical salt decomposition has been avoided. Additionally, the CFD simulations results were analyzed and compared with results obtained with a one-dimensional model in Modelica. KW - Solar thermal technologies KW - Hybrid energy system KW - Concentrated solar power KW - Energy storage KW - Photovoltaics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - http://dx.doi.org/10.1063/5.0086268 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September–2 October 2020 Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Mahdi, Zahra A1 - Dersch, Jürgen A1 - Schmitz, Pascal A1 - Dieckmann, Simon A1 - Caminos, Ricardo Alexander Chico A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf A1 - Schwager, Christian A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Gedle, Yibekal A1 - Büscher, Rauno T1 - Technical assessment of Brayton cycle heat pumps for the integration in hybrid PV-CSP power plants T2 - SOLARPACES 2020 N2 - The hybridization of Concentrated Solar Power (CSP) and Photovoltaics (PV) systems is a promising approach to reduce costs of solar power plants, while increasing dispatchability and flexibility of power generation. High temperature heat pumps (HT HP) can be utilized to boost the salt temperature in the thermal energy storage (TES) of a Parabolic Trough Collector (PTC) system from 385 °C up to 565 °C. A PV field can supply the power for the HT HP, thus effectively storing the PV power as thermal energy. Besides cost-efficiently storing energy from the PV field, the power block efficiency of the overall system is improved due to the higher steam parameters. This paper presents a technical assessment of Brayton cycle heat pumps to be integrated in hybrid PV-CSP power plants. As a first step, a theoretical analysis was carried out to find the most suitable working fluid. The analysis included the fluids Air, Argon (Ar), Nitrogen (N2) and Carbon dioxide (CO2). N2 has been chosen as the optimal working fluid for the system. After the selection of the ideal working medium, different concepts for the arrangement of a HT HP in a PV-CSP hybrid power plant were developed and simulated in EBSILON®Professional. The concepts were evaluated technically by comparing the number of components required, pressure losses and coefficient of performance (COP). KW - Solar thermal technologies KW - Hybrid energy system KW - Concentrated solar power KW - Power plants KW - Energy storage Y1 - 2022 SN - 978-0-7354-4195-8 U6 - http://dx.doi.org/10.1063/5.0086269 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September–2 October 2020 Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Gedle, Yibekal A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Schmitz, Pascal A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José A1 - Mahdi, Zahra A1 - Caminos, Ricardo Alexander Chico A1 - Dersch, Jürgen T1 - Analysis of an integrated CSP-PV hybrid power plant T2 - SolarPACES 2020 N2 - In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] – [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution. KW - Hybrid energy system KW - Power plants KW - Electricity generation KW - Energy storage KW - Associated liquids Y1 - 2022 SN - 978-0-7354-4195-8 U6 - http://dx.doi.org/10.1063/5.0086236 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September–2 October 2020 Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Schwager, Christian A1 - Flesch, Robert A1 - Schwarzbözl, Peter A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José T1 - Advanced two phase flow model for transient molten salt receiver system simulation JF - Solar Energy N2 - In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed. KW - Molten salt solar tower KW - Molten salt receiver system KW - Dynamic simulation KW - Two-phase modelling KW - Transient flux distribution Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.solener.2021.12.065 SN - 0038-092X (print) SN - 1471-1257 (online) VL - 232 SP - 362 EP - 375 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Schulte, Jonas A1 - Schwager, Christian A1 - Frantz, Cathy A1 - Schloms, Felix A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Control concept for a molten salt receiver in star design: Development, optimization and testing with cloud passage scenarios T2 - SolarPACES conference proceedings N2 - A promising approach to reduce the system costs of molten salt solar receivers is to enable the irradiation of the absorber tubes on both sides. The star design is an innovative receiver design, pursuing this approach. The unconventional design leads to new challenges in controlling the system. This paper presents a control concept for a molten salt receiver system in star design. The control parameters are optimized in a defined test cycle by minimizing a cost function. The control concept is tested in realistic cloud passage scenarios based on real weather data. During these tests, the control system showed no sign of unstable behavior, but to perform sufficiently in every scenario further research and development like integrating Model Predictive Controls (MPCs) need to be done. The presented concept is a starting point to do so. KW - Molten salt receiver KW - Star design KW - Control optimization KW - Cloud passages Y1 - 2023 U6 - http://dx.doi.org/10.52825/solarpaces.v1i.693 SN - 2751-9899 (online) N1 - 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - Vol. 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Schwager, Christian A1 - Angele, Florian A1 - Nouri, Bijan A1 - Schwarzbözl, Peter A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Impact of DNI forecast quality on performance prediction for a commercial scale solar tower: Application of nowcasting DNI maps to dynamic solar tower simulation T2 - SolarPACES conference proceedings N2 - Concerning current efforts to improve operational efficiency and to lower overall costs of concentrating solar power (CSP) plants with prediction-based algorithms, this study investigates the quality and uncertainty of nowcasting data regarding the implications for process predictions. DNI (direct normal irradiation) maps from an all-sky imager-based nowcasting system are applied to a dynamic prediction model coupled with ray tracing. The results underline the need for high-resolution DNI maps in order to predict net yield and receiver outlet temperature realistically. Furthermore, based on a statistical uncertainty analysis, a correlation is developed, which allows for predicting the uncertainty of the net power prediction based on the corresponding DNI forecast uncertainty. However, the study reveals significant prediction errors and the demand for further improvement in the accuracy at which local shadings are forecasted. KW - Process prediction KW - DNI forecasting KW - Nowcasting KW - Uncertainty analysis KW - Molten salt receiver system, Y1 - 2024 U6 - http://dx.doi.org/10.52825/solarpaces.v1i.675 SN - 2751-9899 (online) N1 - 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - Vol. 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Atti, Vikrama A1 - Alexopoulos, Spiros A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf A1 - Dutta, Siddharth A1 - Kioutsioukis, Ioannis T1 - DNI forecast tool for the smart operation of a parabolic trough collector system with concrete thermal energy storage: Theory, results and outlook T2 - SolarPACES conference proceedings N2 - This work presents a basic forecast tool for predicting direct normal irradiance (DNI) in hourly resolution, which the Solar-Institut Jülich (SIJ) is developing within a research project. The DNI forecast data shall be used for a parabolic trough collector (PTC) system with a concrete thermal energy storage (C-TES) located at the company KEAN Soft Drinks Ltd in Limassol, Cyprus. On a daily basis, 24-hour DNI prediction data in hourly resolution shall be automatically produced using free or very low-cost weather forecast data as input. The purpose of the DNI forecast tool is to automatically transfer the DNI forecast data on a daily basis to a main control unit (MCU). The MCU automatically makes a smart decision on the operation mode of the PTC system such as steam production mode and/or C-TES charging mode. The DNI forecast tool was evaluated using historical data of measured DNI from an on-site weather station, which was compared to the DNI forecast data. The DNI forecast tool was tested using data from 56 days between January and March 2022, which included days with a strong variation in DNI due to cloud passages. For the evaluation of the DNI forecast reliability, three categories were created and the forecast data was sorted accordingly. The result was that the DNI forecast tool has a reliability of 71.4 % based on the tested days. The result fulfils SIJ’s aim to achieve a reliability of around 70 %, but SIJ aims to still improve the DNI forecast quality. KW - Direct normal irradiance forecast KW - DNI forecast KW - Parabolic trough collector KW - PTC KW - Thermal Energy Storage Y1 - 2024 U6 - http://dx.doi.org/10.52825/solarpaces.v1i.731 SN - 2751-9899 (online) N1 - 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - VOL. 1 PB - TIB Open Publishing CY - Hannover ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Schneider, Iesse Peer A1 - Angele, Florian A1 - Atti, Vikrama A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Development of heliostat field calibration methods: Theory and experimental test results T2 - SolarPACES conference proceedings N2 - In this work, three patent pending calibration methods for heliostat fields of central receiver systems (CRS) developed by the Solar-Institut Jülich (SIJ) of the FH Aachen University of Applied Sciences are presented. The calibration methods can either operate in a combined mode or in stand-alone mode. The first calibration method, method A, foresees that a camera matrix is placed into the receiver plane where it is subjected to concentrated solar irradiance during a measurement process. The second calibration method, method B, uses an unmanned aerial vehicle (UAV) such as a quadrocopter to automatically fly into the reflected solar irradiance cross-section of one or more heliostats (two variants of method B were tested). The third calibration method, method C, foresees a stereo central camera or multiple stereo cameras installed e.g. on the solar tower whereby the orientations of the heliostats are calculated from the location detection of spherical red markers attached to the heliostats. The most accurate method is method A which has a mean accuracy of 0.17 mrad. The mean accuracy of method B variant 1 is 1.36 mrad and of variant 2 is 1.73 mrad. Method C has a mean accuracy of 15.07 mrad. For method B there is great potential regarding improving the measurement accuracy. For method C the collected data was not sufficient for determining whether or not there is potential for improving the accuracy. KW - Heliostat Field Calibration KW - Unmanned aerial vehicle KW - UAV KW - Quadrocopter KW - Camera system Y1 - 2024 U6 - http://dx.doi.org/10.52825/solarpaces.v1i.678 SN - 2751-9899 (online) N1 - 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - Vol. 1 PB - TIB Open Publishing CY - Hannover ER - TY - JOUR A1 - Kahmann, Stephanie L. A1 - Rausch, Valentin A1 - Plümer, Jonathan A1 - Müller, Lars P. A1 - Pieper, Martin A1 - Wegmann, Kilian T1 - The automized fracture edge detection and generation of three-dimensional fracture probability heat maps JF - Medical Engineering & Physics N2 - With proven impact of statistical fracture analysis on fracture classifications, it is desirable to minimize the manual work and to maximize repeatability of this approach. We address this with an algorithm that reduces the manual effort to segmentation, fragment identification and reduction. The fracture edge detection and heat map generation are performed automatically. With the same input, the algorithm always delivers the same output. The tool transforms one intact template consecutively onto each fractured specimen by linear least square optimization, detects the fragment edges in the template and then superimposes them to generate a fracture probability heat map. We hypothesized that the algorithm runs faster than the manual evaluation and with low (< 5 mm) deviation. We tested the hypothesis in 10 fractured proximal humeri and found that it performs with good accuracy (2.5 mm ± 2.4 mm averaged Euclidean distance) and speed (23 times faster). When applied to a distal humerus, a tibia plateau, and a scaphoid fracture, the run times were low (1–2 min), and the detected edges correct by visual judgement. In the geometrically complex acetabulum, at a run time of 78 min some outliers were considered acceptable. An automatically generated fracture probability heat map based on 50 proximal humerus fractures matches the areas of high risk of fracture reported in medical literature. Such automation of the fracture analysis method is advantageous and could be extended to reduce the manual effort even further. KW - Fracture classification KW - Shoulder KW - Probability distribution mapping KW - Morphing KW - Imaging Y1 - 2022 SN - 1350-4533 VL - 2022 IS - 110 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames JF - Engineering Structures N2 - Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill’s and frame’s geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames. KW - Seismic loading KW - Earthquake KW - In-plane performance, isolation KW - Infill wall design KW - Numerical modelling Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.engstruct.2022.114959 SN - 0141-0296 VL - 272 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Blanke, Tobias A1 - Schmidt, Katharina S. A1 - Göttsche, Joachim A1 - Döring, Bernd A1 - Frisch, Jérôme A1 - van Treeck, Christoph ED - Weidlich, Anke ED - Neumann, Dirk ED - Gust, Gunther ED - Staudt, Philipp ED - Schäfer, Mirko T1 - Time series aggregation for energy system design: review and extension of modelling seasonal storages T2 - Energy Informatics N2 - Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, “Time series aggregation for energy system design: Modeling seasonal storage”, has developed a seasonal storage model to address this issue. Simultaneously, the paper “Optimal design of multi-energy systems with seasonal storage” has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results. KW - Energy system KW - Renewable energy KW - Mixed integer linear programming (MILP) KW - Typical periods KW - Time-series aggregation Y1 - 2022 U6 - http://dx.doi.org/10.1186/s42162-022-00208-5 SN - 2520-8942 N1 - Proceedings of the 11th DACH+ Conference on Energy Informatics, 15-16 September 2022, Freiburg, Germany. VL - 5 IS - 1, Article number: 17 SP - 1 EP - 14 PB - Springer Nature ER - TY - CHAP A1 - Pütz, Sebastian A1 - Baier, Ralph A1 - Brauner, Philipp A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - Liehner, Luca A1 - Mertens, Alexander A1 - Rodemann, Niklas A1 - Schneider, Sebastian A1 - Schollemann, Alexander A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank T. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena T1 - An interdisciplinary view on humane interfaces for digital shadows in the internet of production T2 - 2022 15th International Conference on Human System Interaction (HSI) N2 - Digital shadows play a central role for the next generation industrial internet, also known as Internet of Production (IoP). However, prior research has not considered systematically how human actors interact with digital shadows, shaping their potential for success. To address this research gap, we assembled an interdisciplinary team of authors from diverse areas of human-centered research to propose and discuss design and research recommendations for the implementation of industrial user interfaces for digital shadows, as they are currently conceptualized for the IoP. Based on the four use cases of decision support systems, knowledge sharing in global production networks, human-robot collaboration, and monitoring employee workload, we derive recommendations for interface design and enhancing workers’ capabilities. This analysis is extended by introducing requirements from the higher-level perspectives of governance and organization. KW - digital twin KW - digital shadow KW - cyber-physical production system KW - human-machine interface Y1 - 2022 SN - 978-1-6654-6823-7 (Print) SN - 978-1-6654-6822-0 (Online) U6 - http://dx.doi.org/10.1109/HSI55341.2022.9869467 SN - 2158-2246 (Print) SN - 2158-2254 (Online) N1 - 15th International Conference on Human System Interaction (HSI), 28-31 July 2022, Melbourne, Australia. PB - IEEE ER - TY - CHAP A1 - Riga, Evi A1 - Pitilakis, Kyriazis A1 - Butenweg, Christoph A1 - Apostolaki, Stefania A1 - Karatzetzou, Anna ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Investigating the impact of the new European Seismic Hazard Model ESHM20 on the seismic design and safety control of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - The seismic performance and safety of major European industrial facilities has a global interest for Europe, its citizens and economy. A potential major disaster at an industrial site could affect several countries, probably far beyond the country where it is located. However, the seismic design and safety assessment of these facilities is practically based on national, often outdated seismic hazard assessment studies, due to many reasons, including the absence of a reliable, commonly developed seismic hazard model for whole Europe. This important gap is no more existing, as the 2020 European Seismic Hazard Model ESHM20 was released in December 2021. In this paper we investigate the expected impact of the adoption of ESHM20 on the seismic demand for industrial facilities, through the comparison of the ESHM20 probabilistic hazard at the sites where industrial facilities are located with the respective national and European regulations. The goal of this preliminary work in the framework of Working Group 13 of the European Association for Earthquake Engineering (EAEE), is to identify potential inadequacies in the design and safety control of existing industrial facilities and to highlight the expected impact of the adoption of the new European Seismic Hazard Model on the design of new industrial facilities and the safety assessment of existing ones. KW - ESHM20, industrial facilities KW - seismic hazard KW - seismic design KW - safety control Y1 - 2022 SN - 978-973-100-533-1 SP - 3261 EP - 3270 ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Gams, Matija A1 - Klinkel, Sven ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Effects of prior in-plane damage on out-of-plane response of masonry infills with openings T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - Masonry infill walls are the most traditional enclosure system that is still widely used in RC frame buildings all over the world, particularly in seismic active regions. Although infill walls are usually neglected in seismic design, during an earthquake event they are subjected to in-plane and out-of-plane forces that can act separately or simultaneously. Since observations of damage to buildings after recent earthquakes showed detrimental effects of in-plane and out-of-plane load interaction on infill walls, the number of studies that focus on influence of in-plane damage on out-of-plane response has significantly increased. However, most of the xperimental campaigns have considered only solid infills and there is a lack of combined in-plane and out-of-plane experimental tests on masonry infills with openings, although windows and doors strongly affect seismic performance. In this paper, two types of experimental tests on infills with window openings are presented. The first is a pure out-of-plane test and the second one is a sequential in-plane and out-of-plane test aimed at investigating the effects of existing in-plane damage on outof-plane response. Additionally, findings from two tests with similar load procedure that were carried out on fully infilled RC frames in the scope of the same project are used for comparison. Test results clearly show that window opening increased vulnerability of infills to combined seismic actions and that prevention of damage in infills with openings is of the utmost importance for seismic safety. KW - Seismic loading KW - In-plane load KW - Out-of-plane load KW - Interaction KW - Window opening Y1 - 2022 SN - 978-973-100-533-1 SP - 2747 EP - 2756 ER - TY - CHAP A1 - Morandi, Paolo A1 - Butenweg, Christoph A1 - Breis, Khaled A1 - Beyer, Katrin A1 - Magenes, Guido ED - Arion, Christian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Behaviour factor q for the seismic design of URM buildings T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - Recent earthquakes showed that low-rise URM buildings following codecompliant seismic design and details behaved in general very well without substantial damages. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. Values of q-factors are derived for low-rise URM buildings with rigid diaphragms, with reference to modern structural configurations realized in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0 to 3.0 are proposed. KW - unreinforced masonry buildings KW - modern constructions KW - seismic design KW - linear elastic analysis; KW - behaviour factor q Y1 - 2022 SN - 978-973-100-533-1 SP - 1184 EP - 1194 ER - TY - RPRT A1 - Ghinaiya, Jagdishkumar A1 - Lehmann, Thomas A1 - Göttsche, Joachim T1 - LOCAL+ – ein kreislauffähiger Holzmodulbau mit nachhaltigem Energie- und Wohnraumkonzept T2 - Bauphysik N2 - Mit dem Beitrag des Teams der FH Aachen zum SDE 21/22 wird im Projekt LOCAL+ ein kreislauffähiger Holzmodulbau mit einem innovativen Wohnraumkonzept geplant und umgesetzt. Ziel dieses Konzeptes ist die Verringerung des stetig steigenden Wohnflächenbedarfs durch ein Raum-in-Raum Konzept. Gebäudetechnisch wird in dem Projekt nicht nur das Einzelgebäude betrachtet, sondern unter Berücksichtigung des Gebäudebestandes wird für das Quartier ein innovatives und nachhaltiges Energiekonzept entwickelt. Ein zentrales Wasserstoffsystem ist für ein Quartier geplant, um den Stromverbrauch aus dem Netz im Winter zu reduzieren. Zentraler Bestandteil des TGA-Konzepts ist ein unterirdischer Eisspeicher, eine PVT und eine Wärmepumpe mit intelligenter Regelstrategie. Ein Teil des neuen Gebäudes (Design Challenge DC) wird in Wuppertal als Hausdemonstrationseinheit (HDU) präsentiert. Eine hygrothermische Simulation der HDU wurde mit der WUFI-Software durchgeführt. Da im Innenraum Lehmmodule und -platten als Feuchtigkeitspuffer verwendet werden, spielen die Themen Feuchtigkeit, Holzfäule und Schimmelwachstum eine wichtige Rolle. KW - Energiekonzept KW - Gesamtwassergehalt KW - Feuchtigkeit KW - Verdunstungskälte KW - energy concept Y1 - 2022 U6 - http://dx.doi.org/10.1002/bapi.202200010 SN - 0171-5445 (Print) SN - 1437-0980 (Online) VL - 44 IS - 3 SP - 136 EP - 142 PB - Ernst & Sohn CY - Hoboken ER - TY - JOUR A1 - Kubalski, Thomas A1 - Butenweg, Christoph A1 - El-Deib, Khaled ED - Jesse, Dirk T1 - Vereinfachte Berücksichtigung der Rahmentragwirkung in Mauerwerksgebäuden T1 - Simplified consideratioon of framing effects in masonry buildings JF - Bautechnik N2 - Aufgrund der gestiegenen Anforderungen durch höhere Ein-wirkungen aus Wind und Erdbeben ist eine Verbesserung und Optimierung der Berechnungs- und Bemessungsansätze für Mauerwerksbauten erforderlich. Eine bessere Ausnutzung der Tragwerksreserven ist durch die Berücksichtigung der Rah-mentragwirkung mit einer Aktivierung der Deckenscheiben in den Rechenmodellen möglich, die in der Praxis aufgrund der Komplexität der Wand-Decken-Interaktion bislang nicht aus-genutzt wird. Im vorliegenden Aufsatz wird ein vereinfachter Ansatz auf Grundlage der mitwirkenden Plattenbreite von Schubwänden aus Mauerwerk vorgestellt, der die wesentli-chen Einfl ussfaktoren in parametrisierten Tabellen erfasst. Damit steht den Tragwerksplanern ein einfach anwendbares Werkzeug zur Verfügung, um die Rahmentragwirkung in der Mauerwerksbemessung anzusetzen. N2 - Due to the increased requirements resulting from higher wind and earthquake loads, it is necessary to improve and optimise the calculation and design approaches for masonry structures. An important contribution to a better utilisation of the structural load-bearing reserves is the consideration of the framing ef-fects through the activation of the fl oor slabs in the calculation models, which has not been utilised in practice so far due to the complexity of the wall-slab interaction. The paper presents a simplifi ed approach based on the contributory slab width, which captures the essential infl uencing factors in parameter-ised tables. This provides structural engineers with a simple tool to exploit the frame load-bearing effect in masonry design. KW - Rahmentragwirkung KW - Mauerwerksgebäude KW - Wand-Decken-Interaktion KW - Momentenverteilung KW - DIN EN 1996 Y1 - 2022 U6 - http://dx.doi.org/10.1002/bate.202200081 SN - 0932-8351 SN - 1437-0999 VL - 99 IS - 12 SP - 865 EP - 928 PB - Ernst & Sohn CY - Berlin ER - TY - JOUR A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Phlipp, Michel A1 - Lins, Robin A1 - Renaut, Philipp ED - Haghsheno, Shervin T1 - Isolierung und BIM-basiertes Bauwerksmonitoring des neuen Gebäudekomplexes für das BioSense-Institut in Novi Sad, Serbien JF - Bauingenieur N2 - Im Norden von Serbien erfolgt in Novi Sad der Neubau eines modernen Forschungsgebäudes für das BioSense-Institut mit finanzieller Unterstützung durch die Eu-ropäische Union. Der Gebäudeteil mit Laboren wird zum Schutz und zur Sicherstellung des reibungslosen Betriebs der sensiblen und kapitalintensiven technischen Einbauten mit ei-ner Erdbebenisolierung mit integrierter Körperschallisolation versehen. Zusätzlich wird der entkoppelte Laborteil des For-schungsgebäudes mit einem BIM-basierten Bauwerksmonito-ring versehen, um Änderungen des Gebäudezustands jederzeit abfragen und beurteilen zu können. KW - BIM KW - Sensor KW - Monitoring KW - Bauwerksüberwachung KW - Basisisolierung Y1 - 2022 U6 - http://dx.doi.org/10.37544/0005-6650-2022-06-28 SN - 1436-4867 SN - 0005-6650 N1 - D-A-CH-Teil VL - 97 IS - 6 SP - S3 EP - S5 PB - VDI Fachmedien CY - Düsseldorf ER -