TY - JOUR A1 - Ziemons, Karl T1 - Jet production and fragmentation properties in deep inelastic muon scattering JF - Zeitschrift für Physik C : Particles and Fields Y1 - 1987 SN - 0170-9739 N1 - European Muon Collaboration VL - 36 IS - 4 SP - 527 EP - 543 ER - TY - JOUR A1 - Heierli, Joachim A1 - Purves, Ross S. A1 - Felber, Andreas A1 - Kowalski, Julia T1 - Verification of nearest-neighbours interpretations in avalanche forecasting JF - Annals of Glaciology N2 - This paper examines the positive and negative aspects of a range of interpretations of nearest-neighbours models. Measures-oriented and distributionoriented verification methods are applied to categorial, probabilistic and descriptive interpretations of nearest neighbours used operationally in avalanche forecasting in Scotland and Switzerland. The dependence of skill and accuracy measures on base rate is illustrated. The purpose of the forecast and the definition of events are important variables in determining the quality of the forecast. A discussion of the application of different interpretations in operational avalanche forecasting is presented. KW - avalanche Y1 - 2004 SN - 1727-5644 VL - 38 IS - 1 SP - 84 EP - 88 ER - TY - JOUR A1 - McArdell, Brian W. A1 - Bartelt, Perry A1 - Kowalski, Julia T1 - Field observations of basal forces and fluid pore pressure in a debris flow JF - Geophysical Research Letters (GRL) N2 - Using results from an 8 m2 instrumented force plate we describe field measurements of normal and shear stresses, and fluid pore pressure for a debris flow. The flow depth increased from 0.1 to 1 m within the first 12 s of flow front arrival, remained relatively constant until 100 s, and then gradually decreased to 0.5 m by 600 s. Normal and shear stresses and pore fluid pressure varied in-phase with the flow depth. Calculated bulk densities are ρb = 2000–2250 kg m−3 for the bulk flow and ρf = 1600–1750 kg m−3 for the fluid phase. The ratio of effective normal stress to shear stress yields a Coulomb basal friction angle of ϕ = 26° at the flow front. We did not find a strong correlation between the degree of agitation in the flow, estimated using the signal from a geophone on the force plate, and an assumed dynamic pore fluid pressure. Our data support the idea that excess pore-fluid pressures are long lived in debris flows and therefore contribute to their unusual mobility. KW - debris flow Y1 - 2007 SN - 0094-8276 VL - 34 IS - 7 ER - TY - JOUR A1 - Fischer, Jan-Thomas A1 - Kowalski, Julia A1 - Pudasaini, Shiva P. A1 - Miller, S. A. T1 - Dynamic Avalanche Modeling in Natural Terrain JF - International Snow Science Workshop, Davos 2009, Proceedings ; Proc. ISSW 2009 N2 - The powerful avalanche simulation toolbox RAMMS (Rapid Mass Movements) is based on a depth-averaged hydrodynamic system of equations with a Voellmy-Salm friction relation. The two empirical friction parameters μ and � correspond to a dry Coulomb friction and a viscous resistance, respectively. Although μ and � lack a proper physical explanation, 60 years of acquired avalanche data in the Swiss Alps made a systematic calibration possible. RAMMS can therefore successfully model avalanche flow depth, velocities, impact pressure and run out distances. Pudasaini and Hutter (2003) have proposed extended, rigorously derived model equations that account for local curvature and twist. A coordinate transformation into a reference system, applied to the actual mountain topography of the natural avalanche path, is performed. The local curvature and the twist of the avalanche path induce an additional term in the overburden pressure. This leads to a modification of the Coulomb friction, the free-surface pressure gradient, the pressure induced by the channel, and the gravity components along and normal to the curved and twisted reference surface. This eventually guides the flow dynamics and deposits of avalanches. In the present study, we investigate the influence of curvature on avalanche flow in real mountain terrain. Simulations of real avalanche paths are performed and compared for the different models approaches. An algorithm to calculate curvature in real terrain is introduced in RAMMS. This leads to a curvature dependent friction relation in an extended version of the Voellmy-Salm model equations. Our analysis provides yet another step in interpreting the physical meaning and significance of the friction parameters used in the RAMMS computational environment. KW - snow KW - avalanche Y1 - 2009 SP - 448 EP - 452 ER - TY - JOUR A1 - Christen, Marc A1 - Kowalski, Julia A1 - Bartelt, Perry T1 - RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain JF - Cold Regions Science and Technology N2 - Numerical avalanche dynamics models have become an essential part of snow engineering. Coupled with field observations and historical records, they are especially helpful in understanding avalanche flow in complex terrain. However, their application poses several new challenges to avalanche engineers. A detailed understanding of the avalanche phenomena is required to construct hazard scenarios which involve the careful specification of initial conditions (release zone location and dimensions) and definition of appropriate friction parameters. The interpretation of simulation results requires an understanding of the numerical solution schemes and easy to use visualization tools. We discuss these problems by presenting the computer model RAMMS, which was specially designed by the SLF as a practical tool for avalanche engineers. RAMMS solves the depth-averaged equations governing avalanche flow with accurate second-order numerical solution schemes. The model allows the specification of multiple release zones in three-dimensional terrain. Snow cover entrainment is considered. Furthermore, two different flow rheologies can be applied: the standard Voellmy–Salm (VS) approach or a random kinetic energy (RKE) model, which accounts for the random motion and inelastic interaction between snow granules. We present the governing differential equations, highlight some of the input and output features of RAMMS and then apply the models with entrainment to simulate two well-documented avalanche events recorded at the Vallée de la Sionne test site. KW - RAMMS KW - snow KW - avalanche Y1 - 2010 U6 - https://doi.org/10.1016/j.coldregions.2010.04.005 SN - 1872-7441 VL - 63 IS - 1-2 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Christen, Marc A1 - Bartelt, Perry A1 - Kowalski, Julia T1 - Back calculation of the In den Arelen avalanche with RAMMS: Interpretation of model results JF - Annals of Glaciology N2 - Two- and three-dimensional avalanche dynamics models are being increasingly used in hazard-mitigation studies. These models can provide improved and more accurate results for hazard mapping than the simple one-dimensional models presently used in practice. However, two- and three-dimensional models generate an extensive amount of output data, making the interpretation of simulation results more difficult. To perform a simulation in three-dimensional terrain, numerical models require a digital elevation model, specification of avalanche release areas (spatial extent and volume), selection of solution methods, finding an adequate calculation resolution and, finally, the choice of friction parameters. In this paper, the importance and difficulty of correctly setting up and analysing the results of a numerical avalanche dynamics simulation is discussed. We apply the two-dimensional simulation program RAMMS to the 1968 extreme avalanche event In den Arelen. We show the effect of model input variations on simulation results and the dangers and complexities in their interpretation. KW - avalanche Y1 - 2010 SN - 1727-5644 U6 - https://doi.org/10.3189/172756410791386553 VL - 51 IS - 54 SP - 161 EP - 168 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Bühler, Yves A1 - Christen, Marc A1 - Kowalski, Julia A1 - Bartelt, Perry T1 - Sensitivity of snow avalanche simulations to digital elevation model quality and resolution JF - Annals of Glaciology N2 - Digital elevation models (DEMs), represent the three-dimensional terrain and are the basic input for numerical snow avalanche dynamics simulations. DEMs can be acquired using topographic maps or remote-sensing technologies, such as photogrammetry or lidar. Depending on the acquisition technique, different spatial resolutions and qualities are achieved. However, there is a lack of studies that investigate the sensitivity of snow avalanche simulation algorithms to the quality and resolution of DEMs. Here, we perform calculations using the numerical avalance dynamics model RAMMS, varying the quality and spatial resolution of the underlying DEMs, while holding the simulation parameters constant. We study both channelized and open-terrain avalanche tracks with variable roughness. To quantify the variance of these simulations, we use well-documented large-scale avalanche events from Davos, Switzerland (winter 2007/08), and from our large-scale avalanche test site, Valĺee de la Sionne (winter 2005/06). We find that the DEM resolution and quality is critical for modeled flow paths, run-out distances, deposits, velocities and impact pressures. Although a spatial resolution of ~25 m is sufficient for large-scale avalanche modeling, the DEM datasets must be checked carefully for anomalies and artifacts before using them for dynamics calculations. KW - snow KW - avalanche Y1 - 2011 SN - 1727-5644 VL - 52 IS - 58 SP - 72 EP - 80 PB - Cambridge University Press CY - Cambridge ER - TY - JOUR A1 - Fischer, Jan-Thomas A1 - Kowalski, Julia A1 - Pudasaini, Shiva P. T1 - Topographic curvature effects in applied avalanche modelling JF - Cold Regions Science and Technology N2 - This paper describes the implementation of topographic curvature effects within the RApid Mass MovementS (RAMMS) snow avalanche simulation toolbox. RAMMS is based on a model similar to shallow water equations with a Coulomb friction relation and the velocity dependent Voellmy drag. It is used for snow avalanche risk assessment in Switzerland. The snow avalanche simulation relies on back calculation of observed avalanches. The calibration of the friction parameters depends on characteristics of the avalanche track. The topographic curvature terms are not yet included in the above mentioned classical model. Here, we fundamentally improve this model by mathematically and physically including the topographic curvature effects. By decomposing the velocity dependent friction into a topography dependent term that accounts for a curvature enhancement in the Coulomb friction, and a topography independent contribution similar to the classical Voellmy drag, we construct a general curvature dependent frictional resistance, and thus propose new extended model equations. With three site-specific examples, we compare the apparent frictional resistance of the new approach, which includes topographic curvature effects, to the classical one. Our simulation results demonstrate substantial effects of the curvature on the flow dynamics e.g., the dynamic pressure distribution along the slope. The comparison of resistance coefficients between the two models demonstrates that the physically based extension presents an improvement to the classical approach. Furthermore a practical example highlights its influence on the pressure outline in the run out zone of the avalanche. Snow avalanche dynamics modeling natural terrain curvature centrifugal force friction coefficients. KW - Snow KW - Avalanche Y1 - 2012 U6 - https://doi.org/10.1016/j.coldregions.2012.01.005 SN - 1872-7441 VL - 74-75 SP - 21 EP - 30 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Suco, Henri-Pierre A1 - Rysstad, Gunnar A1 - Schöning, Michael Josef T1 - Monitoring the microbicidal effectiveness of gaseous hydrogen peroxide in sterilisation processes by means of a calorimetric gas sensor JF - Food control N2 - In the present work, a novel method for monitoring sterilisation processes with gaseous H2O2 in combination with heat activation by means of a specially designed calorimetric gas sensor was evaluated. Therefore, the sterilisation process was extensively studied by using test specimens inoculated with Bacillus atrophaeus spores in order to identify the most influencing process factors on its microbicidal effectiveness. Besides the contact time of the test specimens with gaseous H2O2 varied between 0.2 and 0.5 s, the present H2O2 concentration in a range from 0 to 8% v/v (volume percent) had a strong influence on the microbicidal effectiveness, whereas the change of the vaporiser temperature, gas flow and humidity were almost negligible. Furthermore, a calorimetric H2O2 gas sensor was characterised in the sterilisation process with gaseous H2O2 in a wide range of parameter settings, wherein the measurement signal has shown a linear response against the H2O2 concentration with a sensitivity of 4.75 °C/(% v/v). In a final step, a correlation model by matching the measurement signal of the gas sensor with the microbial inactivation kinetics was established that demonstrates its suitability as an efficient method for validating the microbicidal effectiveness of sterilisation processes with gaseous H2O2. KW - hydrogen peroxide KW - sterilisation KW - Bacillus atrophaeus KW - calorimetric gas sensor Y1 - 2012 U6 - https://doi.org/10.1016/j.foodcont.2012.11.048 SN - 0956-7135 VL - 31 IS - 2 SP - 530 EP - 538 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Olaru, Alexandra Maria A1 - Kowalski, Julia A1 - Sethi, Vaishali A1 - Blümich, Bernhard T1 - Exchange relaxometry of flow at small Péclet numbers in a glass bead pack JF - Journal of Magnetic Resonance (JMR) N2 - In this paper we consider low Péclet number flow in bead packs. A series of relaxation exchange experiments has been conducted and evaluated by ILT analysis. In the resulting correlation maps, we observed a collapse of the signal and a translation towards smaller relaxation times with increasing flow rates, as well as a signal tilt with respect to the diagonal. In the discussion of the phenomena we present a mathematical theory for relaxation exchange experiments that considers both diffusive and advective transport. We perform simulations based on this theory and discuss them with respect to the conducted experiments. KW - NMR exchange relaxometry KW - Low-field NMR Y1 - 2012 U6 - https://doi.org/10.1016/j.jmr.2012.04.015 SN - 1096-0856 VL - 220 SP - 32 EP - 44 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kowalski, Julia A1 - McElwaine, Jim N. T1 - Shallow two-component gravity-driven flows with vertical variation JF - Journal of Fluid Mechanics Y1 - 2013 SN - 0022-1120 VL - 714 SP - 434 EP - 462 PB - Cambridge Univ. Press CY - Cambridge ER - TY - JOUR A1 - Bassam, Rasha A1 - Digel, Ilya A1 - Hescheler, Jürgen A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard T1 - Effects of spermine NONOate and ATP on protein aggregation: light scattering evidences JF - BMC Biophysics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?10.1186/2046-1682-6-1 SN - 2046-1682 SP - 1 EP - 14 PB - BioMed Central CY - London ER - TY - JOUR A1 - Hasan, Istabrak A1 - Keil, Ludger A1 - Staat, Manfred A1 - Wahl, Gerhard A1 - Bourauel, Christoph T1 - Determination of the frictional coefficient of the implant-antler interface : experimental approach JF - Biomedical Engineering / Biomedizinische Technik N2 - The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5–0.7 and 0.3–0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens. Y1 - 2012 SN - 1862-278X VL - 57 IS - 5 SP - 359 EP - 363 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Pieper, Martin T1 - Multiobjective optimization with expensive objectives applied to a thermodynamic material design problem JF - Proceedings in applied mathematics and mechanics : PAMM. 11 (2011), H. 1 Y1 - 2011 SN - 1617-7061 SP - 733 EP - 734 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Fateri, Miranda A1 - Hötter, Jan-Steffen A1 - Gebhardt, Andreas T1 - Experimental and Theoretical Investigation of Buckling Deformation of Fabricated Objects by Selective Laser Melting JF - Physics Procedia N2 - Although Selective Laser Melting (SLM) process is an innovative manufacturing method, there are challenges such as inferior mechanical properties of fabricated objects. Regarding this, buckling deformation which is caused by thermal stress is one of the undesired mechanical properties which must be alleviated. As buckling deformation is more observable in hard to process materials, silver is selected to be studied theoretically and experimentally for this paper. Different scanning strategies are utilized and a Finite Element Method (FEM) is applied to calculate the temperature gradient in order to determine its effect on the buckling deformation of the objects from experiments. Y1 - 2012 U6 - https://doi.org/10.1016/j.phpro.2012.10.062 SN - 1875-3892 N1 - Part of special issue "Laser Assisted Net shape Engineering 7 (LANE 2012)" VL - 39 SP - 464 EP - 470 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Werner, Frederik A1 - Takenaga, Shoko A1 - Taki, Hidenori A1 - Sawada, Kazuaki A1 - Schöning, Michael Josef T1 - Comparison of label-free ACh-imaging sensors based on CCD and LAPS JF - Sensors and Actuators B: Chemical (2012) N2 - Semiconductor-based chemical imaging sensors, like the light-addressable potentiometric sensor (LAPS) or the pH-imaging sensor based on a charge-coupled device (CCD), are becoming a powerful tool for label-free imaging of biological phenomena. We have proposed a polyion-based enzymatic membrane to develop an acetylcholine (ACh) imaging sensor for neural cell-activity observations. In this study, a CCD-type ACh-imaging sensor and a LAPS-type ACh-imaging sensor were fabricated and the prospect of both sensors was clarified by making a comparison of their basic characteristics. Y1 - 2013 SN - 0925-4005 VL - 177 SP - 745 EP - 752 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pieper, Martin T1 - Nonlinear integral equations for an inverse electromagnetic scattering problem JF - Journal of Physics Conference Series. 124 (2008) Y1 - 2008 SN - 1742-6596 ER - TY - JOUR A1 - Pieper, Martin A1 - Ivanyshyn, Olha T1 - Nonlinear integral equations for a 3D inverse acoustic scattering problem : abstract / O. Ivanyshyn and M. Pieper Y1 - 2008 N1 - World Congress on Computational Mechanics <8, 2008, Venedig> ; European Congress on Computational Methods in Applied Sciences and Engineering <5, 2008, Venedig> ER - TY - JOUR A1 - Ewe, Hendrik A1 - Klein, Peter A1 - Pieper, Martin A1 - Füldner, G. T1 - Heat conductivity in sintered aluminium fibers JF - Cellular metals for structural and functional applications : CELLMET 2008 ; proceedings of the International Symposium on Cellular Metals for Structural and Functional Applications held October 8 - 10, 2008 in Dresden, Germany / ed. by Günter Stephani Y1 - 2009 SP - 187 EP - 193 PB - Fraunhofer IFAM CY - Dresden ER - TY - JOUR A1 - Pieper, Martin A1 - Klein, Peter T1 - A simple and accurate numerical network flow model for bionic micro heat exchangers JF - Heat mass transfer Y1 - 2011 SN - 0947-7411 VL - 47 IS - 5 SP - 491 EP - 503 PB - Springer CY - Berlin ER -