TY - CHAP A1 - Bergmann, Ole A1 - Götten, Falk A1 - Braun, Carsten A1 - Janser, Frank T1 - Comparison and evaluation of blade element methods against RANS simulations and test data T2 - CEAS Aeronautical Journal N2 - This paper compares several blade element theory (BET) method-based propeller simulation tools, including an evaluation against static propeller ground tests and high-fidelity Reynolds-Average Navier Stokes (RANS) simulations. Two proprietary propeller geometries for paraglider applications are analysed in static and flight conditions. The RANS simulations are validated with the static test data and used as a reference for comparing the BET in flight conditions. The comparison includes the analysis of varying 2D aerodynamic airfoil parameters and different induced velocity calculation methods. The evaluation of the BET propeller simulation tools shows the strength of the BET tools compared to RANS simulations. The RANS simulations underpredict static experimental data within 10% relative error, while appropriate BET tools overpredict the RANS results by 15–20% relative error. A variation in 2D aerodynamic data depicts the need for highly accurate 2D data for accurate BET results. The nonlinear BET coupled with XFOIL for the 2D aerodynamic data matches best with RANS in static operation and flight conditions. The novel BET tool PropCODE combines both approaches and offers further correction models for highly accurate static and flight condition results. KW - BET KW - CFD propeller simulation KW - Propeller aerodynamics KW - Actuator disk modelling KW - Propeller performance Y1 - 2022 U6 - http://dx.doi.org/10.1007/s13272-022-00579-1 SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Ole Bergmann VL - 13 SP - 535 EP - 557 PB - Springer CY - Wien ER - TY - JOUR A1 - Finger, Felix A1 - Götten, Falk A1 - Braun, Carsten A1 - Bil, Cees T1 - Mass, primary energy, and cost: the impact of optimization objectives on the initial sizing of hybrid-electric general aviation aircraft JF - CEAS Aeronautical Journal N2 - For short take-off and landing (STOL) aircraft, a parallel hybrid-electric propulsion system potentially offers superior performance compared to a conventional propulsion system, because the short-take-off power requirement is much higher than the cruise power requirement. This power-matching problem can be solved with a balanced hybrid propulsion system. However, there is a trade-off between wing loading, power loading, the level of hybridization, as well as range and take-off distance. An optimization method can vary design variables in such a way that a minimum of a particular objective is attained. In this paper, a comparison between the optimization results for minimum mass, minimum consumed primary energy, and minimum cost is conducted. A new initial sizing algorithm for general aviation aircraft with hybrid-electric propulsion systems is applied. This initial sizing methodology covers point performance, mission performance analysis, the weight estimation process, and cost estimation. The methodology is applied to the design of a STOL general aviation aircraft, intended for on-demand air mobility operations. The aircraft is sized to carry eight passengers over a distance of 500 km, while able to take off and land from short airstrips. Results indicate that parallel hybrid-electric propulsion systems must be considered for future STOL aircraft. Y1 - 2020 U6 - http://dx.doi.org/10.1007/s13272-020-00449-8 SN - 1869-5590 N1 - Corresponding author: Felix Finger VL - 2020 IS - 11 SP - 713 EP - 730 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Götten, Falk A1 - Finger, Felix A1 - Havermann, Marc A1 - Braun, Carsten A1 - Marino, M. A1 - Bil, C. T1 - Full configuration drag estimation of short-to-medium range fixed-wing UAVs and its impact on initial sizing optimization JF - CEAS Aeronautical Journal N2 - The paper presents the derivation of a new equivalent skin friction coefficient for estimating the parasitic drag of short-to-medium range fixed-wing unmanned aircraft. The new coefficient is derived from an aerodynamic analysis of ten different unmanned aircraft used for surveillance, reconnaissance, and search and rescue missions. The aircraft is simulated using a validated unsteady Reynolds-averaged Navier Stokes approach. The UAV’s parasitic drag is significantly influenced by the presence of miscellaneous components like fixed landing gears or electro-optical sensor turrets. These components are responsible for almost half of an unmanned aircraft’s total parasitic drag. The new equivalent skin friction coefficient accounts for these effects and is significantly higher compared to other aircraft categories. It is used to initially size an unmanned aircraft for a typical reconnaissance mission. The improved parasitic drag estimation yields a much heavier unmanned aircraft when compared to the sizing results using available drag data of manned aircraft. KW - Parasitic drag KW - UAV KW - CFD KW - Aircraft sizing Y1 - 2021 U6 - http://dx.doi.org/10.1007/s13272-021-00522-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Falk Götten VL - 12 SP - 589 EP - 603 PB - Springer CY - Berlin ER - TY - JOUR A1 - Hammer, Thorben A1 - Quitter, Julius A1 - Mayntz, Joscha A1 - Bauschat, J.-Michael A1 - Dahmann, Peter A1 - Götten, Falk A1 - Hille, S. A1 - Stumpf, E. T1 - Free fall drag estimation of small-scale multirotor unmanned aircraft systems using computational fluid dynamics and wind tunnel experiments JF - CEAS Aeronautical Journal N2 - New European Union (EU) regulations for UAS operations require an operational risk analysis, which includes an estimation of the potential danger of the UAS crashing. A key parameter for the potential ground risk is the kinetic impact energy of the UAS. The kinetic energy depends on the impact velocity of the UAS and, therefore, on the aerodynamic drag and the weight during free fall. Hence, estimating the impact energy of a UAS requires an accurate drag estimation of the UAS in that state. The paper at hand presents the aerodynamic drag estimation of small-scale multirotor UAS. Multirotor UAS of various sizes and configurations were analysed with a fully unsteady Reynolds-averaged Navier–Stokes approach. These simulations included different velocities and various fuselage pitch angles of the UAS. The results were compared against force measurements performed in a subsonic wind tunnel and provided good consistency. Furthermore, the influence of the UAS`s fuselage pitch angle as well as the influence of fixed and free spinning propellers on the aerodynamic drag was analysed. Free spinning propellers may increase the drag by up to 110%, depending on the fuselage pitch angle. Increasing the fuselage pitch angle of the UAS lowers the drag by 40% up to 85%, depending on the UAS. The data presented in this paper allow for increased accuracy of ground risk assessments. KW - Multirotor UAS KW - Drag estimation KW - CFD KW - Wind tunnel experiments KW - Wind milling Y1 - 2023 U6 - http://dx.doi.org/10.1007/s13272-023-00702-w SN - 1869-5590 (Online) SN - 1869-5582 (Print) N1 - Corresponding author: Thorben Hammer PB - Springer CY - Wien ER -