TY - JOUR A1 - Seynnes, O. R. A1 - Bojsen-Moller, J. A1 - Albracht, Kirsten A1 - Arndt, A. A1 - Cronin, N. J. A1 - Finni, T. A1 - Magnusson, S. P. T1 - Ultrasound-based testing of tendon mechanical properties: a critical evaluation JF - Journal of Applied Physiology Y1 - 2015 U6 - https://doi.org/10.1152/japplphysiol.00849.2014 SN - 8750-7587 VL - 118 IS - 2 SP - 133 EP - 141 ER - TY - CHAP A1 - Siebigteroth, Ines A1 - Kraft, Bodo A1 - Schmidts, Oliver A1 - Zündorf, Albert T1 - A Study on Improving Corpus Creation by Pair Annotation T2 - Proceedings of the Poster Session of the 2nd Conference on Language, Data and Knowledge (LDK-PS 2019) Y1 - 2019 SN - 1613-0073 SP - 40 EP - 44 ER - TY - CHAP A1 - Sildatke, Michael A1 - Karwanni, Hendrik A1 - Kraft, Bodo A1 - Schmidts, Oliver A1 - Zündorf, Albert T1 - Automated Software Quality Monitoring in Research Collaboration Projects T2 - ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops N2 - In collaborative research projects, both researchers and practitioners work together solving business-critical challenges. These projects often deal with ETL processes, in which humans extract information from non-machine-readable documents by hand. AI-based machine learning models can help to solve this problem. Since machine learning approaches are not deterministic, their quality of output may decrease over time. This fact leads to an overall quality loss of the application which embeds machine learning models. Hence, the software qualities in development and production may differ. Machine learning models are black boxes. That makes practitioners skeptical and increases the inhibition threshold for early productive use of research prototypes. Continuous monitoring of software quality in production offers an early response capability on quality loss and encourages the use of machine learning approaches. Furthermore, experts have to ensure that they integrate possible new inputs into the model training as quickly as possible. In this paper, we introduce an architecture pattern with a reference implementation that extends the concept of Metrics Driven Research Collaboration with an automated software quality monitoring in productive use and a possibility to auto-generate new test data coming from processed documents in production. Through automated monitoring of the software quality and auto-generated test data, this approach ensures that the software quality meets and keeps requested thresholds in productive use, even during further continuous deployment and changing input data. Y1 - 2020 U6 - https://doi.org/10.1145/3387940.3391478 N1 - ICSE '20: 42nd International Conference on Software Engineering, Seoul, Republic of Korea, 27 June 2020 - 19 July 2020 SP - 603 EP - 610 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Sildatke, Michael A1 - Karwanni, Hendrik A1 - Kraft, Bodo A1 - Zündorf, Albert T1 - A distributed microservice architecture pattern for the automated generation of information extraction pipelines JF - SN Computer Science N2 - Companies often build their businesses based on product information and therefore try to automate the process of information extraction (IE). Since the information source is usually heterogeneous and non-standardized, classic extract, transform, load techniques reach their limits. Hence, companies must implement the newest findings from research to tackle the challenges of process automation. They require a flexible and robust system that is extendable and ensures the optimal processing of the different document types. This paper provides a distributed microservice architecture pattern that enables the automated generation of IE pipelines. Since their optimal design is individual for each input document, the system ensures the ad-hoc generation of pipelines depending on specific document characteristics at runtime. Furthermore, it introduces the automated quality determination of each available pipeline and controls the integration of new microservices based on their impact on the business value. The introduced system enables fast prototyping of the newest approaches from research and supports companies in automating their IE processes. Based on the automated quality determination, it ensures that the generated pipelines always meet defined business requirements when they come into productive use. KW - Architectural design KW - Model-driven software engineering KW - Software and systems modeling KW - Enterprise information systems KW - Information extraction Y1 - 2023 U6 - https://doi.org/10.1007/s42979-023-02256-4 SN - 2661-8907 N1 - Corresponding authors: Michael Sildatke, Hendrik Karwanni IS - 4, Article number: 833 PB - Springer Singapore CY - Singapore ER - TY - JOUR A1 - Simonis, A. A1 - Dawgul, M. A1 - Lüth, H. A1 - Schöning, Michael Josef T1 - Miniaturised reference electrodes for field-effect sensors compatible to silicon chip technology JF - Electrochimica Acta. 51 (2005), H. 5 Y1 - 2005 SN - 0013-4686 U6 - https://doi.org/10.1016/j.electacta.2005.04.063 SP - 930 EP - 937 ER - TY - JOUR A1 - Simonis, A. A1 - Krings, T. A1 - Lüth, H. A1 - Wang, J. A1 - Schöning, Michael Josef T1 - A „hybrid“ thin-film pH sensor with integrated thick-film reference JF - Sensors. 1 (2001), H. 6 Y1 - 2001 SN - 1424-8220 SP - 183 EP - 192 ER - TY - JOUR A1 - Simonis, A. A1 - Lüth, H. A1 - Wang, J. A1 - Schöning, Michael Josef T1 - Strategies of miniaturised reference electrodes integrated in a silicon-based „one chip“ pH sensor JF - Sensors. 3 (2003), H. 9 Y1 - 2003 SN - 1424-8220 SP - 330 EP - 339 ER - TY - JOUR A1 - Simonis, A. A1 - Lüth, H. A1 - Wang, J. A1 - Schöning, Michael Josef T1 - New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems JF - Sensors and Actuators B. 103 (2004), H. 1-2 Y1 - 2004 SN - 0925-4005 SP - 429 EP - 435 ER - TY - JOUR A1 - Simonis, A. A1 - Ruge, C. A1 - Müller-Veggian, Mattea A1 - Lüth, H. A1 - Schöning, Michael Josef T1 - A long-term stable macroporoustype EIS structure for electrochemical sensor applications JF - Sensors and Actuators B. 91 (2003), H. 1-3 Y1 - 2003 SN - 0925-4005 SP - 21 EP - 25 ER - TY - CHAP A1 - Simsek, Beril A1 - Krause, Hans-Joachim A1 - Engelmann, Ulrich M. ED - Digel, Ilya ED - Staat, Manfred ED - Trzewik, Jürgen ED - Sielemann, Stefanie ED - Erni, Daniel ED - Zylka, Waldemar T1 - Magnetic biosensing with magnetic nanoparticles: Simulative approach to predict signal intensity in frequency mixing magnetic detection T2 - YRA MedTech Symposium (2024) N2 - Magnetic nanoparticles (MNP) are investigated with great interest for biomedical applications in diagnostics (e.g. imaging: magnetic particle imaging (MPI)), therapeutics (e.g. hyperthermia: magnetic fluid hyperthermia (MFH)) and multi-purpose biosensing (e.g. magnetic immunoassays (MIA)). What all of these applications have in common is that they are based on the unique magnetic relaxation mechanisms of MNP in an alternating magnetic field (AMF). While MFH and MPI are currently the most prominent examples of biomedical applications, here we present results on the relatively new biosensing application of frequency mixing magnetic detection (FMMD) from a simulation perspective. In general, we ask how the key parameters of MNP (core size and magnetic anisotropy) affect the FMMD signal: by varying the core size, we investigate the effect of the magnetic volume per MNP; and by changing the effective magnetic anisotropy, we study the MNPs’ flexibility to leave its preferred magnetization direction. From this, we predict the most effective combination of MNP core size and magnetic anisotropy for maximum signal generation. Y1 - 2024 SN - 978-3-940402-65-3 U6 - https://doi.org/10.17185/duepublico/81475 N1 - 4th YRA MedTech Symposium, February 1, 2024. FH Aachen, Campus Jülich SP - 27 EP - 28 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - JOUR A1 - Siqueira, Jose R. A1 - Maki, Rafael M. A1 - Paulovich, Fernando V. A1 - Werner, Frederik A1 - Poghossian, Arshak A1 - Oliveira, Maria C. F. de A1 - Zucolotto, Valtencir A1 - Oliveira, Osvaldo N. Jr. A1 - Schöning, Michael Josef T1 - Use of Information Visualization Methods Eliminating Cross Talk in Multiple Sensing Units Investigated for a Light-Addressable Potentiometric Sensor JF - Analytical Chemistry (2010) Y1 - 2010 SN - 0003-2700 SP - 61 EP - 65 ER - TY - JOUR A1 - Siqueira, Jose R. A1 - Molinnus, Denise A1 - Beging, Stefan A1 - Schöning, Michael Josef T1 - Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection JF - Analytical chemistry N2 - The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor’s surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance–voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (∼18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform. Y1 - 2014 U6 - https://doi.org/10.1021/ac500458s SN - 1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print) VL - 86 IS - 11 SP - 5370 EP - 5375 PB - ACS Publications CY - Columbus ER - TY - JOUR A1 - Siqueira, Jose R. A1 - Werner, Frederik A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Zucolotto, Valtencir A1 - Oliveira, Osvaldo N. Jr. A1 - Schöning, Michael Josef T1 - Layer-by-Layer Assembly of Carbon Nanotubes Incorporated in Light-Addressable Potentiometric Sensors JF - Journal of Physical Chemistry C. 113 (2009), H. 33 Y1 - 2009 SN - 1932-7455 SP - 14765 EP - 14770 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Siqueira, José R. Jr. A1 - Abouzar, Maryam H. A1 - Bäcker, Matthias A1 - Zucolotto, Valtencir A1 - Poghossian, Arshak A1 - Oliveira, Osvaldo N. Jr. A1 - Schöning, Michael Josef T1 - Carbon nanotubes in nanostructured films: Potential application as amperometric and potentiometric field-effect (bio-)chemical sensors JF - physica status solidi (a) . 206 (2009), H. 3 Y1 - 2009 SN - 1862-6319 N1 - Special Issue: Engineering of Functional Interfaces (EnFI 08) SP - 462 EP - 467 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Siqueira, José R. Jr. A1 - Abouzar, Maryam H. A1 - Poghossian, Arshak A1 - Zucolotto, Valtencir A1 - Oliveira, Osvaldo N. Jr. A1 - Schöning, Michael Josef T1 - Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer JF - Biosensors and Bioelectronics. 25 (2009), H. 2 Y1 - 2009 SN - 0956-5663 SP - 497 EP - 501 ER - TY - JOUR A1 - Siqueira, José R. Jr. A1 - Bäcker, Matthias A1 - Poghossian, Arshak A1 - Zucolotto, Valtencir A1 - Oliveira, Osvaldo N. Jr. A1 - Schöning, Michael Josef T1 - Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field-effect devices JF - Physica status solidi (a). 207 (2010), H. 4 Y1 - 2010 SN - 1862-6300 N1 - Special Issue: Engineering of Functional Interfaces EnFI 2009 SP - 781 EP - 786 ER - TY - JOUR A1 - Slabu, Ioana A1 - Roeth, Anjali A. A1 - Engelmann, Ulrich M. A1 - Wiekhorst, Frank A1 - Buhl, Eva M. A1 - Neumann, Ulf P. A1 - Schmitz-Rode, Thomas T1 - Modeling of magnetoliposome uptake in human pancreatic tumor cells in vitro JF - Nanotechnology Y1 - 2019 U6 - https://doi.org/10.1088/1361-6528/ab033e SN - 1361-6528 VL - 30 IS - 18 SP - 184004 ER - TY - JOUR A1 - Sousa, Marcos A. M. A1 - Siqueira, Jose R. Jr. A1 - Vercik, Andres A1 - Schöning, Michael Josef A1 - Oliveira, Osvaldo N. Jr. T1 - Determining the optimized layer-by-layer film architecture with dendrimer/carbon nanotubes for field-effect sensors JF - IEEE Sensors Journal N2 - The capacitive electrolyte–insulator–semiconductor (EIS) structure is a typical device based on a field-effect sensor platform. With a simple silicon-based structure, EIS have been useful for several sensing applications, especially with incorporation of nanostructured films to modulate the ionic transport and the flat-band potential. In this paper, we report on ion transport and changes in flat-band potential in EIS sensors made with layer-by-layer films containing poly(amidoamine) (PAMAM) dendrimer and single-walled carbon nanotubes (SWNTs) adsorbed on p-Si/SiO 2 /Ta 2 O 5 chips with an Al ohmic contact. The impedance spectra were fitted using an equivalent circuit model, from which we could determine parameters such as the double-layer capacitance. This capacitance decreased with the number of bilayers owing to space charge accumulated at the electrolyte–insulator interface, up to three PAMAM/SWNTs bilayers, after which it stabilized. The charge-transfer resistance was also minimum for three bilayers, thus indicating that this is the ideal architecture for an optimized EIS performance. The understanding of the influence of nanostructures and the fine control of operation parameters pave the way for optimizing the design and performance of new EIS sensors. Y1 - 2017 U6 - https://doi.org/10.1109/JSEN.2017.2653238 SN - 1558-1748 VL - 17 IS - 6 SP - 1735 EP - 1740 PB - IEEE CY - New York ER - TY - CHAP A1 - Spannhake, Jan A1 - Schulz, Olaf A1 - Helwig, Andreas A1 - Krenkow, Angelika A1 - Müller, Gerhard A1 - Doll, Theodor T1 - High-temperature MEMS heater platforms: long-term performance of metal and semiconductor heater materials N2 - Micromachined thermal heater platforms offer low electrical power consumption and high modulation speed, i.e. properties which are advantageous for realizing nondispersive infrared (NDIR) gas- and liquid monitoring systems. In this paper, we report on investigations on silicon-on-insulator (SOI) based infrared (IR) emitter devices heated by employing different kinds of metallic and semiconductor heater materials. Our results clearly reveal the superior high-temperature performance of semiconductor over metallic heater materials. Long-term stable emitter operation in the vicinity of 1300 K could be attained using heavily antimony-doped tin dioxide (SnO2:Sb) heater elements. KW - Biosensor KW - Hotplate KW - heater metallisation KW - high-temperature stability KW - electro-migration KW - doped silicon KW - doped metal oxide KW - antimony doped tin oxide Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1513 ER - TY - JOUR A1 - Spelthahn, Heiko A1 - Kirsanov, Dmitry A1 - Legin, Andrey A1 - Osterrath, Thomas A1 - Schubert, Jürgen A1 - Zander, Willi A1 - Schöning, Michael Josef T1 - Development of a thin-film sensor array for analytical monitoring of heavy metals in aqueous solutions JF - Physica Status Solidi (a) N2 - In industrial processes there is a variety of heavy metals (e.g., copper, zinc, cadmium, and lead) in use for wires, coatings, paints, alloys, batteries, etc. Since the application of these transition metals for industry is inevitable, it is a vital task to develop proper analytical techniques for their monitoring at low activity levels, especially because most of these elements are acutely toxic for biological organisms. The determination of ions in solution by means of a simple and inexpensive sensor array is, therefore, a promising task. In this work, a sensor array with heavy metal-sensitive chalcogenide glass membranes for the simultaneous detection of the four ions Ag⁺, Cu2⁺, Cd2⁺, and Pb2⁺ in solution is realized. The results of the physical characterization by means of microscopy, profilometry, Rutherford backscattering spectroscopy (RBS), and scanning electron microscopy (SEM) as well as the electrochemical characterization by means of potentiometric measurements are presented. Additionally, the possibility to expand the sensor array by polymeric sensor membranes is discussed. Y1 - 2012 SN - 1862-6319 U6 - https://doi.org/10.1002/pssa.201100733 VL - 209 IS - 5 SP - 885 EP - 891 PB - Wiley-VCH CY - Weinheim ER -