TY - JOUR A1 - Yazdanbakhsh, Pedram A1 - Solbach, Klaus A1 - Bitz, Andreas T1 - Variable power combiner for RF mode shimming in 7-T MR imaging JF - IEEE Transaction on Biomedical Engineering N2 - This contribution discusses the utilization of RF power in an MRI system with RF mode shimming which enables the superposition of circularly polarized modes of a transmit RF coil array driven by a Butler matrix. Since the required power for the individual modes can vary widely, mode-shimming can result in a significant underutilization of the total available RF power. A variable power combiner (VPC) is proposed to improve the power utilization: it can be realized as a reconfiguration of the MRI transmit system by the inclusion of one additional matrix network which receives the power from all transmit amplifiers at its input ports and provides any desired (combined) power distribution at its output ports by controlling the phase and amplitude of the amplifiers’ input signals. The power distribution at the output ports of the VPC is then fed into the “mode” ports of the coil array Butler matrix in order to superimpose the spatial modes at the highest achievable power utilization. The VPC configuration is compared to the standard configuration of the transmit chain of our MRI system with 8 transmit channels and 16 coils. In realistic scenarios, improved power utilization was achieved from 17% to 60% and from 14% to 55% for an elliptical phantom and a region of interest in the abdomen, respectively, and an increase of the power utilization of 1 dB for a region of interest in the upper leg. In general, it is found that the VPC allows significant improvement in power utilization when the shimming solution demands only a few modes to be energized, while the technique can yield loss in power utilization in cases with many modes required at high power level. Y1 - 2012 U6 - http://dx.doi.org/10.1109/TBME.2012.2205926 SN - 1558-2531 VL - 59 IS - 9 SP - 2549 EP - 2557 PB - IEEE CY - New York ER - TY - JOUR A1 - Wissen, M. A1 - Bogdanski, N. A1 - Scheer, H.-C. A1 - Bitz, Andreas A1 - Ahrens, G. A1 - Gruetzner, G. T1 - Implication of the light polarisation for UV curing of pre-patterned resists JF - Microelectronic Engineering Y1 - 2005 U6 - http://dx.doi.org/10.1016/j.mee.2004.12.099 SN - 0167-9317 VL - 78-79 SP - 659 EP - 664 ER - TY - JOUR A1 - Vos, E. K. A1 - Lagemaat, M. W. A1 - Barentsz, J. O. A1 - Fütterer, J. J. A1 - Zamecnik, P. A1 - Roozen, H. A1 - Orzada, S. A1 - Bitz, Andreas A1 - Maas, M. C. A1 - Scheenen, T. W. J. T1 - Image quality and cancer visibility of T2-weighted Magnetic Resonance Imaging of the prostate at 7 Tesla JF - European Radiology N2 - Objectives To assess the image quality of T2-weighted (T2w) magnetic resonance imaging of the prostate and the visibility of prostate cancer at 7 Tesla (T). Materials & methods Seventeen prostate cancer patients underwent T2w imaging at 7T with only an external transmit/receive array coil. Three radiologists independently scored images for image quality, visibility of anatomical structures, and presence of artefacts. Krippendorff’s alpha and weighted kappa statistics were used to assess inter-observer agreement. Visibility of prostate cancer lesions was assessed by directly linking the T2w images to the confirmed location of prostate cancer on histopathology. Results T2w imaging at 7T was achievable with ‘satisfactory’ (3/5) to ‘good’ (4/5) quality. Visibility of anatomical structures was predominantly scored as ‘satisfactory’ (3/5) and ‘good’ (4/5). If artefacts were present, they were mostly motion artefacts and, to a lesser extent, aliasing artefacts and noise. Krippendorff’s analysis revealed an α = 0.44 between three readers for the overall image quality scores. Clinically significant cancer lesions in both peripheral zone and transition zone were visible at 7T. Conclusion T2w imaging with satisfactory to good quality can be routinely acquired, and cancer lesions were visible in patients with prostate cancer at 7T using only an external transmit/receive body array coil. Y1 - 2014 U6 - http://dx.doi.org/10.1007/s00330-014-3234-6 SN - 1432-1084 VL - 24 IS - 8 SP - 1950 EP - 1958 PB - Springer CY - Cham ER - TY - JOUR A1 - Umutlu, Lale A1 - Orzada, Stephan A1 - Kinner, Sonja A1 - Maderwald, Stefan A1 - Bronte, Irina A1 - Bitz, Andreas A1 - Kraff, Oliver A1 - Ladd, Susanne C. A1 - Antoch, Gerald A1 - Ladd, Mark E. A1 - Quick, Harald H. A1 - Lauenstein, Thomas C. T1 - Renal imaging at 7 Tesla: preliminary results JF - European Radiology N2 - Objective To investigate the feasibility of 7T MR imaging of the kidneys utilising a custom-built 8-channel transmit/receive radiofrequency body coil. Methods In vivo unenhanced MR was performed in 8 healthy volunteers on a 7T whole-body MR system. After B0 shimming the following sequences were obtained: 1) 2D and 3D spoiled gradient-echo sequences (FLASH, VIBE), 2) T1-weighted 2D in and opposed phase 3) True-FISP imaging and 4) a T2-weighted turbo spin echo (TSE) sequence. Visual evaluation of the overall image quality was performed by two radiologists. Results Renal MRI at 7T was feasible in all eight subjects. Best image quality was found using T1-weighted gradient echo MRI, providing high anatomical details and excellent conspicuity of the non-enhanced vasculature. With successful shimming, B1 signal voids could be effectively reduced and/or shifted out of the region of interest in most sequence types. However, T2-weighted TSE imaging remained challenging and strongly impaired because of signal heterogeneities in three volunteers. Conclusion The results demonstrate the feasibility and diagnostic potential of dedicated 7T renal imaging. Further optimisation of imaging sequences and dedicated RF coil concepts are expected to improve the acquisition quality and ultimately provide high clinical diagnostic value. Y1 - 2011 SN - 1432-1084 VL - 21 IS - 4 SP - 841 EP - 849 PB - Springer CY - Berlin ER - TY - JOUR A1 - Umutlu, Lale A1 - Kraff, Oliver A1 - Fischer, Anja A1 - Kinner, Sonja A1 - Maderwald, Stefan A1 - Nassenstein, Kai A1 - Nensa, Felix A1 - Grüneisen, Johannes A1 - Orzada, Stephan A1 - Bitz, Andreas A1 - Forsting, Michael A1 - Ladd, Mark E. A1 - Lauenstein, Thomas C. T1 - Seven-Tesla MRI of the female pelvis JF - European Radiology Y1 - 2013 U6 - http://dx.doi.org/10.1007/s00330-013-2868-0 SN - 1432-1084 VL - 23 IS - 9 SP - 2364 EP - 2373 PB - Springer CY - Berlin ER - TY - JOUR A1 - Umutlu, Lale A1 - Bitz, Andreas A1 - Maderwald, Stefan A1 - Orzada, Stephan A1 - Kinner, Sonja A1 - Kraff, Oliver A1 - Brote, Irina A1 - Ladd, Susanne C. A1 - Schroeder, Tobias A1 - Forsting, Michael T1 - Contrast-enhanced ultra-high-field liver MRI: a feasibility trial JF - European Journal of Radiology Y1 - 2013 U6 - http://dx.doi.org/10.1016/j.ejrad.2011.07.004 SN - 0720-048X VL - 82 IS - 5 SP - 760 EP - 767 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Umutlu, L. A1 - Maderwald, S. A1 - Kinner, S. A1 - Kraff, O. A1 - Bitz, Andreas A1 - Orzada, S. A1 - Johst, S. A1 - Wrede, K. A1 - Forsting, M. A1 - Ladd, M. E. A1 - Lauenstein, T. C. A1 - Quick, H. H. T1 - First-pass contrast-enhanced renal MRA at 7 Tesla: initial results JF - European Radiology Y1 - 2013 U6 - http://dx.doi.org/10.1007/s00330-012-2666-0 SN - 1432-1084 VL - 23 IS - 4 SP - 1059 EP - 1066 PB - Springer CY - Berlin ER - TY - JOUR A1 - Theysohn, Jens M. A1 - Kraff, Oliver A1 - Eilers, Kristina A1 - Andrade, Dorian A1 - Gerwig, Marcus A1 - Timmann, Dagmar A1 - Schmitt, Franz A1 - Ladd, Mark E. A1 - Ladd, Susanne C. A1 - Bitz, Andreas T1 - Vestibular effects of a 7 Tesla MRI examination compared to 1.5 T and 0 T in healthy volunteers JF - PLoS one N2 - Ultra-high-field MRI (7 Tesla (T) and above) elicits more temporary side-effects compared to 1.5 T and 3 T, e.g. dizziness or “postural instability” even after exiting the scanner. The current study aims to assess quantitatively vestibular performance before and after exposure to different MRI scenarios at 7 T, 1.5 T and 0 T. Sway path and body axis rotation (Unterberger's stepping test) were quantitatively recorded in a total of 46 volunteers before, 2 minutes after, and 15 minutes after different exposure scenarios: 7 T head MRI (n = 27), 7 T no RF (n = 22), 7 T only B₀ (n = 20), 7 T in & out B₀ (n = 20), 1.5 T no RF (n = 20), 0 T (n = 15). All exposure scenarios lasted 30 minutes except for brief one minute exposure in 7 T in & out B₀. Both measures were documented utilizing a 3D ultrasound system. During sway path evaluation, the experiment was repeated with eyes both open and closed. Sway paths for all long-lasting 7 T scenarios (normal, no RF, only B₀) with eyes closed were significantly prolonged 2 minutes after exiting the scanner, normalizing after 15 minutes. Brief exposure to 7 T B₀ or 30 minutes exposure to 1.5 T or 0 T did not show significant changes. End positions after Unterberger's stepping test were significantly changed counter-clockwise after all 7 T scenarios, including the brief in & out B₀ exposure. Shorter exposure resulted in a smaller alteration angle. In contrast to sway path, reversal of changes in body axis rotation was incomplete after 15 minutes. 1.5 T caused no rotational changes. The results show that exposure to the 7 Tesla static magnetic field causes only a temporary dysfunction or “over-compensation” of the vestibular system not measurable at 1.5 or 0 Tesla. Radiofrequency fields, gradient switching, and orthostatic dysregulation do not seem to play a role. Y1 - 2014 U6 - http://dx.doi.org/10.1371/journal.pone.0092104 SN - 1932-6203 VL - 9 IS - 3 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Sukhotina, Irina A1 - Streckert, Joachim R. A1 - Bitz, Andreas A1 - Hansen, Volkert W. A1 - Lerchl, Alexander T1 - 1800 MHz electromagnetic field effects on melatonin release from isolated pineal glands JF - Journal of Pineal Research Y1 - 2006 U6 - http://dx.doi.org/10.1111/j.1600-079X.2005.00284.x SN - 1600-079X VL - 40 IS - 1 SP - 86 EP - 91 ER - TY - JOUR A1 - Sommer, Angela M. A1 - Streckert, Joachim A1 - Bitz, Andreas A1 - Hansen, Volkert W. A1 - Lerchl, Alexander T1 - No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice JF - BMC Cancer Y1 - 2004 U6 - http://dx.doi.org/10.1186/1471-2407-4-77 VL - 77 IS - 4 ER - TY - JOUR A1 - Sommer, Angela M. A1 - Bitz, Andreas A1 - Streckert, Joachim A1 - Hansen, Volkert W. A1 - Lerchl, Alexander T1 - Lymphoma development in mice chronically exposed to UMTS-modulated radiofrequency electromagnetic fields JF - Radiation Research Y1 - 2007 U6 - http://dx.doi.org/10.1667/RR0857.1 SN - 1938-5404 VL - 168 IS - 1 SP - 72 EP - 80 ER - TY - JOUR A1 - Schmidt, Katharina A1 - Forkmann, Katarina A1 - Schultz, Heidrun A1 - Gratz, Marcel A1 - Bitz, Andreas A1 - Wiech, Katja A1 - Bingel, Ulrike T1 - Enhanced Neural Reinstatement for Evoked Facial Pain Compared With Evoked Hand Pain JF - The Journal of Pain Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.jpain.2019.03.003 SN - 1526-5900 IS - In Press, Corrected Proof PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schmidt, K. A1 - Forkmann, K. A1 - Sinke, C. A1 - Gratz, M. A1 - Bitz, Andreas A1 - Bingel, U. T1 - The differential effect of trigeminal vs. peripheral pain stimulation on visual processing and memory encoding is influenced by pain-related fear JF - NeuroImage N2 - Compared to peripheral pain, trigeminal pain elicits higher levels of fear, which is assumed to enhance the interruptive effects of pain on concomitant cognitive processes. In this fMRI study we examined the behavioral and neural effects of trigeminal (forehead) and peripheral (hand) pain on visual processing and memory encoding. Cerebral activity was measured in 23 healthy subjects performing a visual categorization task that was immediately followed by a surprise recognition task. During the categorization task subjects received concomitant noxious electrical stimulation on the forehead or hand. Our data show that fear ratings were significantly higher for trigeminal pain. Categorization and recognition performance did not differ between pictures that were presented with trigeminal and peripheral pain. However, object categorization in the presence of trigeminal pain was associated with stronger activity in task-relevant visual areas (lateral occipital complex, LOC), memory encoding areas (hippocampus and parahippocampus) and areas implicated in emotional processing (amygdala) compared to peripheral pain. Further, individual differences in neural activation between the trigeminal and the peripheral condition were positively related to differences in fear ratings between both conditions. Functional connectivity between amygdala and LOC was increased during trigeminal compared to peripheral painful stimulation. Fear-driven compensatory resource activation seems to be enhanced for trigeminal stimuli, presumably due to their exceptional biological relevance. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.neuroimage.2016.03.026 SN - 1053-8119 VL - 134 SP - 386 EP - 395 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schlamann, Marc A1 - Yoon, Min-Suk A1 - Maderwald, Stefan A1 - Pietrzyk, Thomas A1 - Bitz, Andreas A1 - Gerwig, Marcus A1 - Forsting, Michael A1 - Ladd, Susanne C. A1 - Ladd, Mark E. A1 - Kastrup, Oliver T1 - Short term effects of magnetic resonance imaging on excitability of the motor cortex at 1.5T and 7T JF - Academic Radiology N2 - Rationale and Objectives The increasing spread of high-field and ultra-high-field magnetic resonance imaging (MRI) scanners has encouraged new discussion of the safety aspects of MRI. Few studies have been published on possible cognitive effects of MRI examinations. The aim of this study was to examine whether changes are measurable after MRI examinations at 1.5 and 7 T by means of transcranial magnetic stimulation (TMS). Materials and Methods TMS was performed in 12 healthy, right-handed male volunteers. First the individual motor threshold was specified, and then the cortical silent period (SP) was measured. Subsequently, the volunteers were exposed to the 1.5-T MRI scanner for 63 minutes using standard sequences. The MRI examination was immediately followed by another TMS session. Fifteen minutes later, TMS was repeated. Four weeks later, the complete setting was repeated using a 7-T scanner. Control conditions included lying in the 1.5-T scanner for 63 minutes without scanning and lying in a separate room for 63 minutes. TMS was performed in the same way in each case. For statistical analysis, Wilcoxon's rank test was performed. Results Immediately after MRI exposure, the SP was highly significantly prolonged in all 12 subjects at 1.5 and 7 T. The motor threshold was significantly increased. Fifteen minutes after the examination, the measured value tended toward normal again. Control conditions revealed no significant differences. Conclusion MRI examinations lead to a transient and highly significant alteration in cortical excitability. This effect does not seem to depend on the strength of the static magnetic field. Y1 - 2010 U6 - http://dx.doi.org/10.1016/j.acra.2009.10.004 SN - 1076-6332 VL - 17 IS - 3 SP - 277 EP - 281 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schlamann, Marc A1 - Voigt, Melanie A. A1 - Maderwald, Stefan A1 - Bitz, Andreas A1 - Kraff, Oliver A1 - Ladd, Susanne C. A1 - Ladd, Mark E. A1 - Forsting, Michael A1 - Wilhelm, Hans T1 - Exposure to high-field MRI does not affect cognitive function JF - Journal of Magnetic Resonance Imaging N2 - Purpose To assess potential cognitive deficits under the influence of static magnetic fields at various field strengths some studies already exist. These studies were not focused on attention as the most vulnerable cognitive function. Additionally, mostly no magnetic resonance imaging (MRI) sequences were performed. Materials and Methods In all, 25 right-handed men were enrolled in this study. All subjects underwent one MRI examination of 63 minutes at 1.5 T and one at 7 T within an interval of 10 to 30 days. The order of the examinations was randomized. Subjects were referred to six standardized neuropsychological tests strictly focused on attention immediately before and after each MRI examination. Differences in neuropsychological variables between the timepoints before and after each MRI examination were assessed and P-values were calculated Results Only six subtests revealed significant differences between pre- and post-MRI. In these tests the subjects achieved better results in post-MRI testing than in pre-MRI testing (P = 0.013–0.032). The other tests revealed no significant results. Conclusion The improvement in post-MRI testing is only explicable as a result of learning effects. MRI examinations, even in ultrahigh-field scanners, do not seem to have any persisting influence on the attention networks of human cognition immediately after exposure. Y1 - 2010 U6 - http://dx.doi.org/10.1002/jmri.22065 SN - 1522-2586 VL - 31 IS - 5 SP - 1061 EP - 1066 PB - Wiley-Liss CY - New York ER - TY - JOUR A1 - Schlamann, M. A1 - Yoon, M.-S. A1 - Maderwald, S. A1 - Pietrzyk, T. A1 - Bitz, Andreas A1 - Gerwig, M. A1 - Forsting, M. A1 - Ladd, S. C. A1 - Ladd, M. E. A1 - Kastrup, O. T1 - Auswirkungen der Magnetresonanztomografie auf die Elektrophysiologie des motorischen Kortex: eine Studie mit transkranieller Magnetstimulation T1 - Effects of MRI on the electrophysiology of the motor cortex: a TMS study JF - RöFo - Fortschritte auf dem Giebiet der Röntgenstrahlen und der bildgebenden Verfahren Y1 - 2009 U6 - http://dx.doi.org/10.1055/s-0028-1109038 SN - 1438-9029 VL - 181 IS - 3 SP - 215 EP - 219 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Rietsch, Stefan H. G. A1 - Pfaffenrot, Viktor A1 - Bitz, Andreas A1 - Orzada, Stephan A1 - Brunheim, Sascha A1 - Lazik-Palm, Andrea A1 - Theysohn, Jens M. A1 - Ladd, Mark E. A1 - Quick, Harald H. A1 - Kraff, Oliver T1 - An 8-channel transceiver 7-channel receive RF coil setup for high SNR ultrahigh-field MRI of the shoulder at 7T JF - Medical Physics Y1 - 2017 U6 - http://dx.doi.org/10.1002/mp.12612 SN - 0094-2405 IS - Article in press PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Rietsch, Stefan H. G. A1 - Brunheim, Sascha A1 - Orzada, Stephan A1 - Voelker, Maximilian N. A1 - Maderwald, Stefan A1 - Bitz, Andreas A1 - Gratz, Marcel A1 - Ladd, Mark E. A1 - Quick, Harald H. T1 - Development and evaluation of a 16-channel receive-only RF coil to improve 7T ultra-high field body MRI with focus on the spine JF - Magnetic Resonance in Medicine Y1 - 2019 U6 - http://dx.doi.org/10.1002/mrm.27731 SN - 1522-2594 IS - Early view PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Reinhardt, T. A1 - Bitz, Andreas A1 - El Ouardi, A. A1 - Streckert, J. A1 - Sommer, A. A1 - Lerchl, A. A1 - Hansen, V. T1 - Exposure set-ups for in vivo experiments using radial waveguides JF - Radiation Protection Dosimetry Y1 - 2007 U6 - http://dx.doi.org/10.1093/rpd/ncm370 SN - 1742-3406 VL - 124 IS - 1 SP - 21 EP - 26 ER - TY - JOUR A1 - Prochnow, Nora A1 - Gebing, Tina A1 - Ladage, Kerstin A1 - Krause-Finkeldey, Dorothee A1 - Ourdi, Abessamad El A1 - Bitz, Andreas A1 - Streckert, Joachim A1 - Hansen, Volkert A1 - Dermietzel, Rolf T1 - Electromagnetic field effect or simply stress? Effects of UMTS exposure on hippocampal longterm plasticity in the context of procedure related hormone release JF - PLoS one N2 - Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded. Y1 - 2011 U6 - http://dx.doi.org/10.1371/journal.pone.0019437 VL - 6 IS - 5 PB - PLOS CY - San Francisco ER -