TY - CHAP A1 - Rosin, Julia A1 - Butenweg, Christoph T1 - Seismic isolation of cylindrical liquid storage tanks T2 - Proceedings of the 9th European Conference on Structural Dynamics, EURODYN 2014 Porto, Portugal, 30 June - 2 July 2014 / A. Cunha, E. Caetano, .... (eds.) Y1 - 2014 SN - 978-972-752-165-4 SP - 3145 EP - 3152 CY - Porto ER - TY - CHAP A1 - Rosin, Julia A1 - Kubalski, Thomas A1 - Butenweg, Christoph ED - Klinkel, Sven ED - Butenweg, Christoph ED - Lin, Gao ED - Holtschoppen, Britta T1 - Seismic isolation of cylindrical liquid storage tanks T2 - Seismic design of industrial facilities N2 - Seismic excited liquid filled tanks are subjected to extreme loading due to hydrodynamic pressures, which can lead to nonlinear stability failure of the thinwalled cylindrical tanks, as it is known from past earthquakes. A significant reduction of the seismically induced loads can be obtained by the application of base isolation systems, which have to be designed carefully with respect to the modified hydrodynamic behaviour of the tank in interaction with the liquid. For this reason a highly sophisticated fluid-structure interaction model has to be applied for a realistic simulation of the overall dynamic system. In the following, such a model is presented and compared with the results of simplified mathematical models for rigidly supported tanks. Finally, it is examined to what extent a simple mechanical model can represent the behaviour of a base isolated tank in case of seismic excitation Y1 - 2013 SN - 978-3-658-02810-7 SN - 978-3-658-02809-1 SN - 978-3-658-14037-3 U6 - https://doi.org/10.1007/978-3-658-02810-7_36 N1 - International Conference on Seismic Design of Industrial Facilities, Aachen, Germany, 26.-27.09.2013. https://sedif-conference.jimdofree.com/ SP - 429 EP - 440 PB - Springer Vieweg CY - Wiesbaden ER - TY - JOUR A1 - Butenweg, Christoph A1 - Bursi, Oreste S. A1 - Paolacci, Fabrizio A1 - Marinković, Marko A1 - Lanese, Igor A1 - Nardin, Chiara A1 - Quinci, Gianluca ED - Yang, J. T1 - Seismic performance of an industrial multi-storey frame structure with process equipment subjected to shake table testing JF - Engineering Structures N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of process equipment and multiple and simultaneous release of hazardous substances. Nonetheless, current standards for seismic design of industrial facilities are considered inadequate to guarantee proper safety conditions against exceptional events entailing loss of containment and related consequences. On these premises, the SPIF project -Seismic Performance of Multi-Component Systems in Special Risk Industrial Facilities- was proposed within the framework of the European H2020 SERA funding scheme. In detail, the objective of the SPIF project is the investigation of the seismic behaviour of a representative industrial multi-storey frame structure equipped with complex process components by means of shaking table tests. Along this main vein and in a performance-based design perspective, the issues investigated in depth are the interaction between a primary moment resisting frame (MRF) steel structure and secondary process components that influence the performance of the whole system; and a proper check of floor spectra predictions. The evaluation of experimental data clearly shows a favourable performance of the MRF structure, some weaknesses of local details due to the interaction between floor crossbeams and process components and, finally, the overconservatism of current design standards w.r.t. floor spectra predictions. KW - Multi-storey KW - Frame structure KW - Earthquake KW - Tank KW - Piping Y1 - 2021 U6 - https://doi.org/10.1016/j.engstruct.2021.112681 SN - 0141-0296 VL - 243 IS - 15 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Pavese, Alberto A1 - Lanese, Igor A1 - Hoffmeister, Benno A1 - Pinkawa, Marius A1 - Vulcu, Mihai-Cristian A1 - Bursi, Oreste A1 - Nardin, Chiara A1 - Paolacci, Fabrizio A1 - Quinci, Gianluca A1 - Fragiadakis, Michalis A1 - Weber, Felix A1 - Huber, Peter A1 - Renault, Philippe A1 - Gündel, Max A1 - Dyke, Shirley A1 - Ciucci, M. A1 - Marino, A. T1 - Seismic performance of multi-component systems in special risk industrial facilities T2 - Proceedings of the seventeenth world conference on earthquake engineering N2 - Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results. KW - industrial facilities KW - piping KW - installations KW - seismic loading KW - earthquakes Y1 - 2021 N1 - 17. World Conference on Earthquake Engineering, 17WCEE, Sendai, Japan, 2021-09-27 - 2021-10-02 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Mistler, Michael T1 - Seismic resistance of unreinforced masonry buildings T2 - Proceedings of the Eighth International Conference on Computational Structures Technology : [Las Palmas de Cran Canaria, 12-15 September 2006] / ed. by B. H. V. Topping ... Y1 - 2006 SN - 1-905088-06-X U6 - https://doi.org/10.4203/ccp.83.9 SP - Paper 9 PB - Civil-Comp Press CY - Stirling ER - TY - JOUR A1 - Mykoniou, Konstantin A1 - Butenweg, Christoph A1 - Holtschoppen, Britta A1 - Klinkel, Sven T1 - Seismic response analysis of adjacent liquid-storage tanks JF - Earthquake engineering and structural dynamics N2 - A refined substructure technique in the frequency domain is developed, which permits consideration of the interaction effects among adjacent containers through the supporting deformable soil medium. The tank-liquid systems are represented by means of mechanical models, whereas discrete springs and dashpots stand for the soil beneath the foundations. The proposed model is employed to assess the responses of adjacent circular, cylindrical tanks for harmonic and seismic excitations over wide range of tank proportions and soil conditions. The influence of the number, spatial arrangement of the containers and their distance on the overall system's behavior is addressed. The results indicate that the cross-interaction effects can substantially alter the impulsive components of response of each individual element in a tank farm. The degree of this impact is primarily controlled by the tank proportions and the proximity of the predominant natural frequencies of the shell-liquid-soil systems and the input seismic motion. The group effects should be not a priori disregarded, unless the tanks are founded on shallow soil deposit overlying very stiff material or bedrock. KW - liquid-structure interaction KW - seismic response KW - impulsive effects KW - liquid-storage tank KW - structure-soil-structure interaction Y1 - 2016 U6 - https://doi.org/10.1002/eqe.2726 SN - 1096-9845 (E-Journal); 0098-8847 (Print) VL - 45 IS - 11 SP - 1779 EP - 1796 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Butenweg, Christoph A1 - Rosin, Julia A1 - Kubalski, Thomas T1 - Seismic response of conventional and base-isolated liquid storage tanks T2 - International Conference on Earthquake Engineering : 29.-31.05.2013, Skopje, Mazedonien Y1 - 2013 SP - 1 EP - 8 ER - TY - CHAP A1 - Cacciatore, Pamela A1 - Butenweg, Christoph T1 - Seismic safety of cylindrical granular material steel silos under seismic loading T2 - Seismic design of industrial facilities 2020 Y1 - 2020 SN - 978-3-86359-729-0 N1 - 2nd International Conference on Seismic Design of Industrial Facilities (Aachen, Germany, March 4-5, 2020) SP - 231 EP - 244 PB - Apprimus Verlag CY - Aachen ER - TY - CHAP A1 - Gellert, Christoph A1 - Park, Jin A1 - Butenweg, Christoph T1 - Seismic safety verification of masonry structures T2 - Proceedings of the Eight International Masonry Conference : held in Dresden from 4th to 7th of July 2010 / [International Masonry Society ; Technische Universität Dresden]. Ed. by: Wolfram Jäger ... Volume 1. (Masonry / International Masonry Society Special Publication ; 11) Y1 - 2010 SN - 978-3-00-031381-3 SP - 813 EP - 822 PB - ARGE 8IMC Dresden CY - Radebeul ER - TY - CHAP A1 - Tomić, Igor A1 - Penna, Andrea A1 - DeJong, Matthew A1 - Butenweg, Christoph A1 - Correia, António A. A1 - Candeias, Paulo X. A1 - Senaldi, Ilaria A1 - Guerrini, Gabriele A1 - Malomo, Daniele A1 - Beyer, Katrin T1 - Seismic testing of adjacent interacting masonry structures T2 - 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020) N2 - In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the façades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the façade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25%, 50%, 75% and 100% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa KW - Historical centres KW - Stone masonry KW - Adjacent buildings KW - Shake table test Y1 - 2020 U6 - https://doi.org/10.23967/sahc.2021.234 N1 - 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2021), September 29-30 and October 1, 2021, online N1 - (SAHC 2020 ursprünglich geplant für September 2020 in Barelona - verschoben wg. Covid-Pandemie) SP - 1 EP - 12 ER - TY - CHAP A1 - Churilov, Sergej A1 - Dumova-Jovanoska, Elena A1 - Butenweg, Christoph ED - Adam, Christoph ED - Heuer, Rudolf ED - Lenhardt, Wolfgang ED - Schranz, Christian T1 - Seismic verification of existing masonry buildings and strengthening with reinforced concrete jackets T2 - Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) N2 - A methodology for assessment, seismic verification and strengthening of existing masonry buildings is presented in this paper. The verification is performed using a calculation model calibrated with the results from ambient vibration measurements. The calibrated model serves as an input for a deformation-based verification procedure based on the Capacity Spectrum Method (CSM). The bearing capacity of the building is calculated from experimental capacity curves of the individual walls idealized with bilinear elastic-perfectly plastic curves. The experimental capacity curves were obtained from in-plane cyclic loading tests on unreinforced and strengthened masonry walls with reinforced concrete jackets. The seismic action is compared with the load-bearing capacity of the building considering non-linear material behavior with its post-peak capacity. The application of the CSM to masonry buildings and the influence of a traditional strengthening method are demonstrated on the example of a public school building in Skopje, Macedonia. Y1 - 2013 SN - 978-3-902749-04-8 N1 - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics, Vienna, Austria, Paper No. 523 13. D-A-CH Tagung ; Vienna, Austria, 29. - 30. August 2013 http://hdl.handle.net/20.500.12188/15830 (Error - Cannot Connect to Server) ER - TY - CHAP A1 - Renault, Philippe A1 - Butenweg, Christoph T1 - Seismic vulnerability assessment of bridges T2 - First Munich Bridge Assessment Conference, MBAC 2005 : Munich, 20.-25. June 2005 Y1 - 2005 SP - 1 EP - 16 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Kuhlmann, Winfried A1 - Lopez, M. A1 - Fernandez, S. T1 - Seismic vulnerability assessment of the Aachen Cathedral based on measurements and numerical simulations T2 - International Conference on Earthquake Engineering to mark 40 years from Catastrophic 1963 Skopje Earthquake, Skopje 2003 Y1 - 2003 SP - 1 EP - 8 ER - TY - CHAP A1 - Kuhlmann, Wolfram A1 - Butenweg, Christoph A1 - Lopez, Marijen A1 - Fernandez, Sebastian T1 - Seismic vulnerability assessment of the historic Aachen Cathedral T2 - Conference proceedings / 13th World Conference on Earthquake Engineering [Vancouver, British Columbia, Canada, August 1 - 6, 2004] / [hosted by CAEE/ACGP, Canadian Association for Earthquake Engineering] Y1 - 2004 SP - 1 EP - 14 PB - CAEE CY - Vancouver ER - TY - CHAP A1 - Renault, Philippe A1 - Butenweg, Christoph A1 - Mistler, Michael T1 - Seismic vulnerability assessment system for bridges T2 - Proceedings of the Tenth International Conference on Civil, Structural and Environmental Engineering Computing : [Rome, Italy, 30. August - 2. September 2005] / ed. by B. H. V. Topping Y1 - 2005 SN - 1-905088-00-0 SP - 1 EP - 14 PB - Civil-Comp Press CY - Stirling ER - TY - CHAP A1 - Meskouris, Konstantin A1 - Holtschoppen, Britta A1 - Butenweg, Christoph A1 - Park, Jin T1 - Seismische Auslegung von Silo- und Tankbauwerken T2 - Festschrift zum 60. Geburtstag von Univ.-Prof. Dr.-Ing. Ingbert Mangerig. (Berichte aus dem konstruktiven Ingenieurbau ; 2010,6) Y1 - 2010 SP - 215 EP - 224 PB - Univ. der Bundeswehr CY - Neubiberg ER - TY - JOUR A1 - Butenweg, Christoph A1 - Schmitt, T. A1 - Rosen, B. T1 - Seismische Einwirkungen auf erdverlegte Rohrleitungen JF - Bauingenieur N2 - Die erdbebensichere Auslegung von erdverlegten Rohrleitungssystemen ist von wesentlicher Bedeutung zur Sicherstellung der Funktionalität der Versorgungsinfrastruktur nach einem Erdbebenereignis. Zur Vermeidung von Netzausfällen ist es erforderlich, die räumlich weit ausgedehnten Leitungssysteme mit geeigneten rechnerischen Modellen seismisch zu bemessen. Der vorliegende Beitrag behandelt die Beanspruchung von Rohrleitungssystemen durch seismische Welleneinwirkung und stellt geeignete Näherungsansätze und ein detailliertes Rechenmodell für seismische Leitungsanalysen vor. Mit den Ansätzen wird in Berechnungsbeispielen der Einfluss wesentlicher Parameter auf die seismisch induzierten Dehnungen in Rohrleitungssystemen untersucht. Y1 - 2014 SN - 0005-6650 N1 - gedruckt in der Bereichsbibliothek Bayernallee unter der Signatur 13 Z 049 vorhanden VL - 89 SP - 316 EP - 324 PB - VDI Fachmedien CY - Düsseldorf ER - TY - JOUR A1 - Butenweg, Christoph A1 - Schmitt, Timo A1 - Rosen, Britta T1 - Seismische Einwirkungen auf erdverlegte Rohrleitungssysteme JF - Bauingenieur : die richtungsweisende Zeitschrift im Bauingenieurswesen ; offizielle Zeitschrift der VDI-Gesellschaft Bautechnik Y1 - 2014 SN - 0005-6650 VL - 89 (2014) IS - Heft 7/8 SP - 316 EP - 324 PB - VDI Fachmedien CY - Düsseldorf ER - TY - CHAP A1 - Schmitt, T. A1 - Butenweg, Christoph T1 - Seismische Einwirkungen auf erdverlegte Rohrleitungssysteme – Parameterstudie T2 - Erdbeben und bestehende Bauten : 14. D-A-C-H Tagung 20.08. - 21.08.2015, ETH Zürich. (Dokumentation / SIA ; D 0255) Y1 - 2015 SN - 978-3-03732-060-0 SP - 199 EP - 206 PB - SGEB CY - Zürich ER - TY - CHAP A1 - Butenweg, Christoph A1 - Sadegh-Azar, H. A1 - Meskouris, Konstantin T1 - Seismische Vulnerabilität von bestehenden Bauwerken T2 - 5. Forum und Gefahrentag : auf der Suche nach dem Risiko : ein aktuelles Symposium zu Fragen der Risikowahrnehmung und Katastrophenvorsorge in Deutschland, ZDF Mainz Lerchenberg, 13. - 14. Oktober, 2004 Y1 - 2004 SP - 1 ER -