TY - CHAP A1 - Rendon, Carlos A1 - Schwager, Christian A1 - Ghiasi, Mona A1 - Schmitz, Pascal A1 - Bohang, Fakhri A1 - Caminos, Ricardo Alexander Chico A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming T2 - AIP Conference Proceedings Y1 - 2020 U6 - http://dx.doi.org/10.1063/5.0029974 IS - 2303 SP - 170012-1 EP - 170012-9 ER - TY - CHAP A1 - Schwager, Christian A1 - Angele, Florian A1 - Schwarzbözl, Peter A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Model predictive assistance for operational decision making in molten salt receiver systems T2 - SolarPACES: Solar Power & Chemical Energy Systems N2 - Despite the challenges of pioneering molten salt towers (MST), it remains the leading technology in central receiver power plants today, thanks to cost effective storage integration and high cost reduction potential. The limited controllability in volatile solar conditions can cause significant losses, which are difficult to estimate without comprehensive modeling [1]. This paper presents a Methodology to generate predictions of the dynamic behavior of the receiver system as part of an operating assistance system (OAS). Based on this, it delivers proposals if and when to drain and refill the receiver during a cloudy period in order maximize the net yield and quantifies the amount of net electricity gained by this. After prior analysis with a detailed dynamic two-phase model of the entire receiver system, two different reduced modeling approaches where developed and implemented in the OAS. A tailored decision algorithm utilizes both models to deliver the desired predictions efficiently and with appropriate accuracy. KW - Power plants KW - Associated liquids KW - Decision theory KW - Electrochemistry Y1 - 2023 SN - 978-0-7354-4623-6 U6 - http://dx.doi.org/10.1063/5.0151514 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 27th International Conference on Concentrating Solar Power and Chemical Energy Systems 27 September–1 October 2021 Online IS - 2815 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Dielmann, Klaus-Peter A1 - Schieke, Wolf T1 - Mikrogasturbinen - Aufbau und Anwendungen N2 - Mikrogasturbinen: Funktion, Aufbau, Hersteller, Bauformen, Rekuperatorparameter, Besonderheit der Konstruktion, Regelung, Regelbarkeit, Vergleich mit anderen Systemen, Wirkungs- und Nutzungsgrade, Schadstoffemissionen, Nutzung in Kraft-Wärme-Kopplung, Kraft-Wärme-Kälte-Kopplung KW - Gasturbine KW - Mikrogasturbine KW - Micro turbine Y1 - 2000 ER - TY - CHAP A1 - Dielmann, Klaus-Peter A1 - Peters, Bernhard T1 - Micro Turbine Using Different Gases and Liquid Fuels N2 - Micro turbine using different gases and liquid fuels KW - Gasturbine KW - Mikrogasturbine KW - Micro turbine Y1 - 2002 ER - TY - CHAP A1 - Milkova, Kristina A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Methodology for development of seismic vulnerability curve for existing unreinforced Masonry buildings T2 - 17th World Conference on Earthquake Engineering, Sendai, Japan, September 27 to October 2, 2021. N2 - Seismic behavior of an existing unreinforced masonry building built pre-modern code, located in the City of Ohrid, Republic of North Macedonia has been investigated in this paper. The analyzed school building is selected as an archetype in an ongoing project named “Seismic vulnerability assessment of existing masonry structures in Republic of North Macedonia (SeismoWall)”. Two independent segments were included in this research: Seismic hazard assessment by creating a cite specific response spectra and Seismic vulnerability definition by creating a region - specific series of vulnerability curves for the chosen building topology. A reliable Seismic Hazard Assessment for a selected region is a crucial point for performing a seismic risk analysis of a characteristic building class. In that manner, a scenario – based method that incorporates together the knowledge of tectonic style of the considered region, the active fault characterization, the earth crust model and the historical seismicity named Neo Deterministic approach is used for calculation of the response spectra for the location of the building. Variations of the rupturing process are taken into account in the nucleation point of the rupture, in the rupture velocity pattern and in the istribution of the slip on the fault. The results obtained from the multiple scenarios are obtained as an envelope of the response spectra computed for the cite using the procedure Maximum Credible Seismic Input (MCSI). Capacity of the selected building has been determined by using nonlinear static analysis. MINEA software (SDA Engineering) was used for verification of the structural safety of the chosen unreinforced masonry structure. In the process of optimization of the number of samples, computational cost required in a Monte Carlo simulation is significantly reduced since the simulation is performed on a polynomial response surface function for prediction of the structural response. Performance point, found as the intersection of the capacity of the building and the spectra used, is chosen as a response parameter. Five levels of damage limit states based on the capacity curve of the building are defined in dependency on the yield displacement and the maximum displacement. Maximum likelihood estimation procedure is utilized in the process of vulnerability curves determination. As a result, region specific series of vulnerability curves for the chosen type of masonry structures are defined. The obtained probabilities of exceedance a specific damage states as a result from vulnerability curves are compared with the observed damages happened after the earthquake in July 2017 in the City of Ohrid, North Macedonia. KW - Masonry structures KW - Vulnerability Curves KW - Capacity Curve KW - Neo-Deterministic KW - Seismic Hazard Y1 - 2020 N1 - Die Konferenz war ursprünglich für den 13-18 September 2020 angesetzt. ER - TY - CHAP A1 - Nierle, Elisabeth A1 - Pieper, Martin T1 - Measuring social impacts in engineering education to improve sustainability skills T2 - European Society for Engineering Education (SEFI) N2 - In times of social climate protection movements, such as Fridays for Future, the priorities of society, industry and higher education are currently changing. The consideration of sustainability challenges is increasing. In the context of sustainable development, social skills are crucial to achieving the United Nations Sustainable Development Goals (SDGs). In particular, the impact that educational activities have on people, communities and society is therefore coming to the fore. Research has shown that people with high levels of social competence are better able to manage stressful situations, maintain positive relationships and communicate effectively. They are also associated with better academic performance and career success. However, especially in engineering programs, the social pillar is underrepresented compared to the environmental and economic pillars. In response to these changes, higher education institutions should be more aware of their social impact - from individual forms of teaching to entire modules and degree programs. To specifically determine the potential for improvement and derive resulting change for further development, we present an initial framework for social impact measurement by transferring already established approaches from the business sector to the education sector. To demonstrate the applicability, we measure the key competencies taught in undergraduate engineering programs in Germany. The aim is to prepare the students for success in the modern world of work and their future contribution to sustainable development. Additionally, the university can include the results in its sustainability report. Our method can be applied to different teaching methods and enables their comparison. KW - Social impact measurement KW - Key competences KW - Sustainable engineering education KW - Future skills Y1 - 2023 U6 - http://dx.doi.org/10.21427/QPR4-0T22 N1 - 51st Annual Conference of the European Society for Engineering Education (SEFI) N1 - Corresponding Author: Elisabeth Nierle ER - TY - CHAP A1 - Meskouris, Konstantin A1 - Mistler, Michael A1 - Butenweg, Christoph T1 - Mauerwerksbauten unter Erdbebenbelastung T2 - Numerische Methoden zur Problemlösung im konstruktiven Bauwesen : 34. Aachener Baustofftag ; 02. Februar 2006 Y1 - 2006 PB - IBAC CY - Aachen ER - TY - CHAP A1 - Goldbach, Daniel T1 - Management der funktionalen Sicherheit einer Entwicklung eines sicherheitskritischen Systems im Bereich Nutzfahrzeuge T2 - Commercial vehicle technology 2010 : proceedings of the 1st Commercial Vehicle Technology Symposium (CVT 2010), March 16 - 18, 2010, Kaiserslautern / K. Berns ... (ed.) Y1 - 2010 SN - 978-3-8322-9040-5 SP - 487 EP - 495 PB - Shaker CY - Aachen ER - TY - CHAP A1 - Zischank, Wolfgang J. A1 - Heidler, Fridolin A1 - Wiesinger, J. A1 - Stimper, K. A1 - Kern, Alexander A1 - Seevers, M. T1 - Magnetic Fields and Induced Voltages inside LPZ 1 Measured at a 1:6 Scale Model Building N2 - Laborexperimente zu Blitzschutzzonen in Stahlbetongebäuden anhand eines Modells im Maßstab 1:6 N2 - For the application of the concept of Lightning Protection Zones (LPZ), the knowledge of the magnetic fields and induced voltages inside a structure is necessary. Laboratory experiments have been conducted at a downscaled model of a building (scale factor 1:6) to determine these electromagnetic quantities in case of a direct strike to the structure. The model (3 m x 2 m x 2 m) represented a small industrial building using the reinforcement of the concrete as electromagnetic shield. The magnetic fields and magnetic field derivatives were measured at several location inside the scaled model. Further, the voltages induced on three typical cable routes inside the model was determined. The influence of the lightning current waveshape, point-of-strike, bonding of the cable routes, and bridging of an expansion joint in the middle of the building on these quantities was studied. KW - Blitzschlag KW - Elektromagnetischer Schutzschild KW - Stahlbeton KW - Maßstabsgetreues Modell KW - Lightning KW - electromagnetic shielding KW - reinforced concrete KW - scaled model Y1 - 2004 ER - TY - CHAP A1 - Kern, Alexander A1 - Heidler, Fridolin A1 - Seevers, M. A1 - Zischank, Wolfgang J. T1 - Magnetic Fields and Induced Voltages in case of a Direct Strike - Comparison of Results obtained from Measurements at a Scaled Building to those of IEC 62305-4 N2 - In the paper the results obtained from experiments at a modelled reinforced building in case of a direct lightning strike are compared with calculations. The comparison includes peak values of the magnetic field Hmax, its derivative (dH/dt)max and of induced voltages umax in typical cable routings. The experiments are performed at a 1:6 scaled building and the results are extrapolated using the similarity relations theory. The calculations are based on the approximate formulae given in IEC 62305-4 and have to be supplemented by a rough estimation of the additional shielding effect of a second reinforcement layer. The comparison shows, that the measured peak values of the magnetic field and its derivative are mostly lower than the calculated. The induced voltages are in good agreement. Hence, calculations of the induced voltages based on IEC 62305-4 are a good method for lightning protection studies of buildings, where the reinforcement is used as a grid-like electromagnetic shield. N2 - Auswirkungen eines direkten Blitzeinschlages auf ein Gebäude, Vergleich von experimentellen Ergebnissen und Berechnungen basierend auf einer Formel aus der IEC 62305-4 KW - Blitz KW - Direkter Blitzschlag KW - Elektromagnetischer Schutzschild KW - Magnetische Felder KW - Induzierte Spannungen KW - Kalkulation KW - Direct lightning strike KW - electromagnetic shield KW - magnetic fields KW - induced voltages KW - calculations Y1 - 2004 SN - 0304-3886 N1 - Journal of electrostatics: Beitr. auf S. 379 - 385. doi:10.1016/j.elstat.2006.09.004 ER - TY - CHAP A1 - Giresini, Linda A1 - Butenweg, Christoph A1 - Andreini, M. A1 - De Falco, A. A1 - Sassu, M. T1 - Macro-elements identification in historic chapels: the case of St. Venerio Chapel in Reggiolo - Emilia Romagna T2 - 9th International Conference on Structural Analyses of Historical Conctruction, 14 - 17 October, 2014, Mexico City Y1 - 2014 SP - 1 EP - 12 ER - TY - CHAP A1 - Böhm, Stefan A1 - Hellmanns, Mark A1 - Backes, Andreas A1 - Dilger, Klaus T1 - Lock-in thermography based NDT of automotive parts T2 - Proceedings of the 3rd World Congress on Adhesion and Related Phenomena : WCARP-III, October 15 -18, 2006, Beijing, China Y1 - 2006 SP - 382 EP - 384 PB - Beijing Adhesion Society of China CY - Beijing ER - TY - CHAP A1 - Kern, Alexander A1 - Krichel, Frank A1 - Müller, Klaus-Peter T1 - Lightning protection design of a renewable energy hybrid-system without power mains connection N2 - In the year 2000 a direct lightning strike to the hybridsystem without power mains connection VATALI on the Greek island Crete results in the destruction and damage of some mechanical and electrical components. The hybrid-system VATALI was not lightning protected at that time. The hardware damage costs are approx. 60,000 €. The exposed site of the hybrid-system on top of a mountain was and still is the reason for a high risk of lightning strikes. Also in the future further lightning strikes have to be taken into consideration. In the paper a fundamental lightning protection design concept for renewable energy hybrid-systems without power mains connection and protection measures against direct strikes and overvoltages are shown in detail. The design concept was realized exemplarily for the hybrid-system VATALI. The hardware costs for the protection measures were about 15,000 €. About 50% of the costs are due to protection measures against direct strikes, 50% are due to overvoltage protection. Future extensions, new installations, or modifications have to be included into the lightning protection design concept of the hybrid-system. KW - Blitzschutz KW - Erneuerbare Energien KW - Hybridsystem KW - Lightning protection KW - Renewable energy KW - hybrid-system Y1 - 2001 ER - TY - CHAP A1 - Pieper, Martin T1 - Lernzielorientierte Kurse und Stack Aufgaben in der Mathematikausbildung T2 - Beiträge zum Mathematikunterricht 2018 : Vorträge zur Mathematikdidaktik und zur Schnittstelle Mathematik/Mathematikdidaktik auf der gemeinsamen Jahrestagung GDM und DMV 2018 (52. Jahrestagung der Gesellschaft für Didaktik der Mathematik). Bd. 3 Y1 - 2018 SN - 978-3-95987-089-4 SP - 1399 EP - 1402 PB - WTM-Verlag CY - Münster ER - TY - CHAP A1 - Zischank, Wolfgang J. A1 - Heidler, Fridolin A1 - Kern, Alexander A1 - Metwally, I. A. A1 - Wiesinger, J. A1 - Seevers, M. T1 - Laboratory simulation of direct lightning strokes to a modelled building - measurement of magnetic fields and induced voltages N2 - In IEC 61312-2 equations for the assessment of the magnetic fields inside structures due to a direct lightning strike are given. These equations are based on computer simulations for shields consisting of a single-layer steel grid of a given mesh width. Real constructions, however, contain at least two layers of reinforcement steel grids. The objective of this study was to experimentally determine the additional shielding effectiveness of a second reinforcement layer compared to a single-layer grid. To this end, simulated structures were set up in the high current laboratory. The structures consisted of cubic cages of 2 m side length with one or with two reinforcement grids, respectively. The structures were exposed to direct lightning currents representing the variety of anticipated lightning current waveforms. The magnetic fields and their derivatives at several positions inside the structure as well as the voltage between “floor” and “roof” in the center were determined for different current injection points. From these data the improvement of the shielding caused by a second reinforcement layer is derived. KW - Direkter Blitzschlag KW - Elektromagnetischer Schutzschild KW - Magnetische Felder KW - Induzierte Spannungen KW - Stahlbetonkonstruktion KW - Lightning KW - electromagnetic shielding KW - magnetic field KW - reinforced concrete KW - induced voltage Y1 - 2002 ER - TY - CHAP A1 - Werner, Frederik A1 - Mansour, Ahmed A1 - Rateike, Franz-Matthias A1 - Schusser, Sebastian A1 - Wagner, Torsten A1 - Yoshinobu, Tatsuo A1 - Keusgen, Michael A1 - Schöning, Michael Josef ED - Gerlach, Gerald T1 - Kompakter Aufbau eines lichtadressierbaren potentiometrischen Sensors mit verfahrbarem Diodenlaser T2 - 10. Dresdner Sensor-Symposium : Dresden, 5. - 7. Dezember 2011 ; miniaturisierte analytische Verfahren, Hochtemperatur-Sensoren, Sensoren für Bioprozess- und Verfahrenstechnik, Sensoren für die Medizin, Chemische Verfahrenstechnik, Lebensmittelanalytik, innovative Sensorlösungen, Sensoren für die Wasserqualität, Selbstüberwachung / Gerald Gerlach ... (Hg.) Dresdner Beiträge zur Sensorik. 43 Y1 - 2011 SN - 978-3-942710-53-4 SP - 277 EP - 280 PB - TUDpress CY - Dresden ER - TY - CHAP A1 - Markinkovic, Marko A1 - Butenweg, Christoph A1 - Pavese, A. A1 - Lanese, I. A1 - Hoffmeister, B. A1 - Pinkawa, M. A1 - Vulcu, C. A1 - Bursi, O. A1 - Nardin, C. A1 - Paolacci, F. A1 - Quinci, G. A1 - Fragiadakis, M. A1 - Weber, F. A1 - Huber, P. A1 - Renault, P. A1 - Gündel, M. A1 - Dyke, S. A1 - Ciucci, M. A1 - Marino, A. T1 - Investigation of the seismic behaviour of structural and nonstructural components in industrial facilities by means of shaking table tests T2 - Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) Y1 - 2020 SN - 978-3-86359-729-0 SP - 159 EP - 172 ER - TY - CHAP A1 - Kubalski, T. A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Klinkel, S. T1 - Investigation Of The Seismic Behaviour Of Infill Masonry Using Numerical Modelling Approaches T2 - 16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 N2 - Masonry is a widely spread construction type which is used all over the world for different types of structures. Due to its simple and cheap construction, it is used as non-structural as well as structural element. In frame structures, such as reinforced concrete frames, masonry may be used as infill. While the bare frame itself is able to carry the loads when it comes to seismic events, the infilled frame is not able to warp freely due to the constrained movement. This restraint results in a complex interaction between the infill and the surrounding frame, which may lead to severe damage to the infill as well as the surrounding frame. The interaction is studied in different projects and effective approaches for the description of the behavior are still lacking. Experimental programs are usually quite expensive, while numerical models, once validated, do offer an efficient approach for the investigation of the interaction when horizontally loaded. In order to study the numerous parameters influencing the seismic load bearing behavior, numerical models may be used. Therefore, this contribution presents a numerical approach for the simulation of infill masonry in reinforced concrete frames. Both parts, the surrounding frame as well as the infill are represented by micro modelling approaches to correctly take into account the different types of failure. The adopted numerical model describes the inelastic behavior of the system, as indicated by the obtained results of the overall structural response as well as the formation of damage in the infilled wall. Comparison of the numerical and experimental results highlights the valuable contribution of numerical simulations in the study and design of infilled frames. As damage of the infill masonry may occur in-plane due to the interaction as well as out-of-plane due to the low vertical load, both directions of loading are investigated. Y1 - 2017 N1 - Paper No 3064 SP - 1 EP - 11 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - CHAP A1 - Riga, Evi A1 - Pitilakis, Kyriazis A1 - Butenweg, Christoph A1 - Apostolaki, Stefania A1 - Karatzetzou, Anna ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Investigating the impact of the new European Seismic Hazard Model ESHM20 on the seismic design and safety control of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology September 4 – September 9, 2022, Bucharest N2 - The seismic performance and safety of major European industrial facilities has a global interest for Europe, its citizens and economy. A potential major disaster at an industrial site could affect several countries, probably far beyond the country where it is located. However, the seismic design and safety assessment of these facilities is practically based on national, often outdated seismic hazard assessment studies, due to many reasons, including the absence of a reliable, commonly developed seismic hazard model for whole Europe. This important gap is no more existing, as the 2020 European Seismic Hazard Model ESHM20 was released in December 2021. In this paper we investigate the expected impact of the adoption of ESHM20 on the seismic demand for industrial facilities, through the comparison of the ESHM20 probabilistic hazard at the sites where industrial facilities are located with the respective national and European regulations. The goal of this preliminary work in the framework of Working Group 13 of the European Association for Earthquake Engineering (EAEE), is to identify potential inadequacies in the design and safety control of existing industrial facilities and to highlight the expected impact of the adoption of the new European Seismic Hazard Model on the design of new industrial facilities and the safety assessment of existing ones. KW - ESHM20, industrial facilities KW - seismic hazard KW - seismic design KW - safety control Y1 - 2022 SN - 978-973-100-533-1 SP - 3261 EP - 3270 ER - TY - CHAP A1 - Niederwestberg, Stefan A1 - Schneider, Falko A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Introduction to a direct irradiated transparent tube particle receiver T2 - SOLARPACES 2020 N2 - New materials often lead to innovations and advantages in technical applications. This also applies to the particle receiver proposed in this work that deploys high-temperature and scratch resistant transparent ceramics. With this receiver design, particles are heated through direct-contact concentrated solar irradiance while flowing downwards through tubular transparent ceramics from top to bottom. In this paper, the developed particle receiver as well as advantages and disadvantages are described. Investigations on the particle heat-up characteristics from solar irradiance were carried out with DEM simulations which indicate that particle temperatures can reach up to 1200 K. Additionally, a simulation model was set up for investigating the dynamic behavior. A test receiver at laboratory scale has been designed and is currently being built. In upcoming tests, the receiver test rig will be used to validate the simulation results. The design and the measurement equipment is described in this work. KW - Solar irradiance KW - Ceramics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - http://dx.doi.org/10.1063/5.0086735 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 26th International Conference on Concentrating Solar Power and Chemical Energy Systems 28 September–2 October 2020 Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER -