TY - CHAP A1 - Bauschat, J.-Michael A1 - Benner, Miriam A1 - Klinge, Henner A1 - Ziegler, Simon T1 - Urbane Mobilität entdeckt die 3. Dimension T2 - Transforming Mobility – What Next? N2 - Der Themenkomplex urbane Mobilität ist getrieben durch den Verkehrsinfarkt in Ballungszentren, durch Luftverschmutzung und Lärm, sowie den Trend zum Leben in der Stadt in den städteplanerischen Fokus gerückt. Emissionsneutrale Antriebskonzepte in der Luftfahrt führen zu Ansätzen Fluggeräte einzusetzen, die batteriegetrieben vertikal aufsteigen und landen können. Flugphysikalisch und energetisch ist diese Technik nur dann sinnvoll, wenn es zwingende Gründe gibt (z.B. Rettungseinsätze), daher wird der flugphysikalische Hintergrund prinzipiell erläutert. Es werden einige aktuelle Lufttransportkonzepte für eine urbane Personenbeförderung vorgestellt. Sollte es verstärkt zu Lufttransport über Städten kommen, müssen betroffene Lufträume geordnet und überwacht werden. Wie kompatibel Lufttransportsysteme mit den heute bereits relevanten urbanen Beförderungsmitteln sein müssen, wird kritisch diskutiert. Abschließend werden die Aspekte Akzeptanz durch die Kunden und Wirtschaftlichkeit ebenso angerissen, wie die hochproblematische Rohstoffgewinnung, die Entsorgung und das Recycling von Batterien. Y1 - 2022 SN - 978-3-658-36429-8 U6 - https://doi.org/10.1007/978-3-658-36430-4_53 N1 - Tagungsband zum 13. Wissenschaftsforum Mobilität, Beiträge des Wissenschaftsforums SP - 895 EP - 916 PB - Springer Gabler CY - Wiesbaden ER - TY - JOUR A1 - Hein, Andreas M. A1 - Eubanks, T. Marshall A1 - Lingam, Manasvi A1 - Hibberd, Adam A1 - Fries, Dan A1 - Schneider, Jean A1 - Kervella, Pierre A1 - Kennedy, Robert A1 - Perakis, Nikolaos A1 - Dachwald, Bernd T1 - Interstellar now! Missions to explore nearby interstellar objects JF - Advances in Space Research N2 - The recently discovered first hyperbolic objects passing through the Solar System, 1I/’Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system. KW - Interstellar objects KW - Trajectories KW - Missions Y1 - 2022 U6 - https://doi.org/10.1016/j.asr.2021.06.052 SN - 0273-1177 VL - 69 IS - 1 SP - 402 EP - 414 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Funke, Harald A1 - Esch, Thomas A1 - Roosen, Petra T1 - Antriebssystemanpassungen zur Verwendung von LPG als Flugkraftstoff JF - Motortechnische Zeitschrift (MTZ) N2 - Auch in der allgemeinen Luftfahrt wäre es wünschenswert, die bereits vorhandenen Verbrennungsmotoren mit weniger CO₂-trächtigen Kraftstoffen als dem heute weit verbreiteten Avgas 100LL betreiben zu können. Es ist anzunehmen, dass im Vergleich die unter Normalbedingungen gasförmigen Kraftstoffe CNG, LPG oder LNG deutlich weniger Emissionen produzieren. Erforderliche Antriebssystemanpassungen wurden im Rahmen eines Forschungsprojekts an der FH Aachen untersucht. Y1 - 2022 U6 - https://doi.org/10.1007/s35146-021-0778-2 VL - 2022 IS - 83 SP - 58 EP - 62 PB - Springer Nature CY - Basel ER - TY - JOUR A1 - Funke, Harald A1 - Esch, Thomas A1 - Roosen, Petra T1 - Powertrain Adaptions for LPG Usage in General Aviation JF - MTZ worldwide N2 - In general aviation, too, it is desirable to be able to operate existing internal combustion engines with fuels that produce less CO₂ than Avgas 100LL being widely used today It can be assumed that, in comparison, the fuels CNG, LPG or LNG, which are gaseous under normal conditions, produce significantly lower emissions. Necessary propulsion system adaptations were investigated as part of a research project at Aachen University of Applied Sciences. Y1 - 2022 U6 - https://doi.org/10.1007/s38313-021-0756-6 VL - 2022 IS - 83 SP - 58 EP - 62 PB - Springer Nature CY - Basel ER - TY - CHAP A1 - Horikawa, Atsushi A1 - Ashikaga, Mitsugu A1 - Yamaguchi, Masato A1 - Ogino, Tomoyuki A1 - Aoki, Shigeki A1 - Wirsum, Manfred A1 - Funke, Harald A1 - Kusterer, Karsten T1 - Combined heat and power supply demonstration of Micro-Mix Hydrogen Combustion Applied to M1A-17 Gas Turbine T2 - Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) (Volume 3A) N2 - Kawasaki Heavy Industries, Ltd. (KHI), Aachen University of Applied Sciences, and B&B-AGEMA GmbH have investigated the potential of low NOx micro-mix (MMX) hydrogen combustion and its application to an industrial gas turbine combustor. Engine demonstration tests of a MMX combustor for the M1A-17 gas turbine with a co-generation system were conducted in the hydrogen-fueled power generation plant in Kobe City, Japan. This paper presents the results of the commissioning test and the combined heat and power (CHP) supply demonstration. In the commissioning test, grid interconnection, loading tests and load cut-off tests were successfully conducted. All measurement results satisfied the Japanese environmental regulation values. Dust and soot as well as SOx were not detected. The NOx emissions were below 84 ppmv at 15 % O2. The noise level at the site boundary was below 60 dB. The vibration at the site boundary was below 45 dB. During the combined heat and power supply demonstration, heat and power were supplied to neighboring public facilities with the MMX combustion technology and 100 % hydrogen fuel. The electric power output reached 1800 kW at which the NOx emissions were 72 ppmv at 15 % O2, and 60 %RH. Combustion instabilities were not observed. The gas turbine efficiency was improved by about 1 % compared to a non-premixed type combustor with water injection as NOx reduction method. During a total equivalent operation time of 1040 hours, all combustor parts, the M1A-17 gas turbine as such, and the co-generation system were without any issues. KW - industrial gas turbine KW - combustor development KW - fuels KW - hydrogen KW - emission Y1 - 2022 SN - 978-0-7918-8599-4 U6 - https://doi.org/10.1115/GT2022-81620 N1 - ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition June 13–17, 2022 Rotterdam, Netherlands PB - American Society of Mechanical Engineers CY - Fairfield ER - TY - CHAP A1 - Tamaldin, Noreffendy A1 - Mansor, Muhd Rizuan A1 - Mat Yamin, Ahmad Kamal A1 - Bin Abdollah, Mohd Fazli A1 - Esch, Thomas A1 - Tonoli, Andrea A1 - Reisinger, Karl Heinz A1 - Sprenger, Hanna A1 - Razuli, Hisham ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Development of UTeM United Future Fuel Design Training Center Under Erasmus+ United Program T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - The industrial revolution IR4.0 era have driven many states of the art technologies to be introduced especially in the automotive industry. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South-East Asia (SEA). Indulging this situation, FH Joanneum, Austria together with European partners from FH Aachen, Germany and Politecnico Di Torino, Italy is taking initiative to close the gap utilizing the Erasmus+ United grant from EU. A consortium was founded to engage with automotive technology transfer using the European ramework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative, and high-quality training courses to increase graduate’s employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing Universityindustry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future. KW - Erasmus+ United KW - technology transfer KW - UTeM Engineering Knowledge Transfer Unit KW - Malaysian automotive industry Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - https://doi.org/10.1007/978-981-19-3179-6_50 SN - 2195-4356 N1 - 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, 23 November 2021 SP - 274 EP - 278 PB - Springer Nature CY - Singapore ER - TY - GEN A1 - Feldmann, Marco A1 - Francke, Gero A1 - Espe, Clemes A1 - Chen, Qian A1 - Baader, Fabian A1 - Boxberg, Marc S. A1 - Sustrate, Anna-Marie A1 - Kowalski, Julia A1 - Dachwald, Bernd T1 - Performance data of an ice-melting probe from field tests in two different ice environments N2 - This dataset was acquired at field tests of the steerable ice-melting probe "EnEx-IceMole" (Dachwald et al., 2014). A field test in summer 2014 was used to test the melting probe's system, before the probe was shipped to Antarctica, where, in international cooperation with the MIDGE project, the objective of a sampling mission in the southern hemisphere summer 2014/2015 was to return a clean englacial sample from the subglacial brine reservoir supplying the Blood Falls at Taylor Glacier (Badgeley et al., 2017, German et al., 2021). The standardized log-files generated by the IceMole during melting operation include more than 100 operational parameters, housekeeping information, and error states, which are reported to the base station in intervals of 4 s. Occasional packet loss in data transmission resulted in a sparse number of increased sampling intervals, which where compensated for by linear interpolation during post processing. The presented dataset is based on a subset of this data: The penetration distance is calculated based on the ice screw drive encoder signal, providing the rate of rotation, and the screw's thread pitch. The melting speed is calculated from the same data, assuming the rate of rotation to be constant over one sampling interval. The contact force is calculated from the longitudinal screw force, which es measured by strain gauges. The used heating power is calculated from binary states of all heating elements, which can only be either switched on or off. Temperatures are measured at each heating element and averaged for three zones (melting head, side-wall heaters and back-plate heaters). KW - Ocean Worlds KW - Icy Moons KW - Cryobot KW - Analogue Environments KW - Melting Efficiency KW - Melting Performance KW - Melting Probe KW - Ice Melting Y1 - 2022 U6 - https://doi.org/10.5281/zenodo.6094866 N1 - Forschungsdaten zu "Field-test performance of an ice-melting probe in a terrestrial analogue environment" (https://opus.bibliothek.fh-aachen.de/opus4/frontdoor/index/index/docId/10889) ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils T1 - Flexible fuel operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixture JF - International Journal of Gas Turbine, Propulsion and Power Systems N2 - The role of hydrogen (H2) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH4) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H2/CH4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H2/CH4 fuel mixture composition is varied between 57 and 100 vol.% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NOx performance Y1 - 2022 SN - 1882-5079 VL - 13 IS - 2 SP - 1 EP - 7 ER - TY - GEN A1 - Keimer, Jona A1 - Girbig, Leo A1 - Mayntz, Joscha A1 - Tegtmeyer, Philipp A1 - Wendland, Frederik A1 - Dahman, Peter A1 - Fisher, Alex A1 - Dorrington, Graham T1 - Flight mission optimization for eco-efficiency in consideration of electric regeneration and atmospheric conditions T2 - AIAA AVIATION 2022 Forum N2 - The development and operation of hybrid or purely electrically powered aircraft in regional air mobility is a significant challenge for the entire aviation sector. This technology is expected to lead to substantial advances in flight performance, energy efficiency, reliability, safety, noise reduction, and exhaust emissions. Nevertheless, any consumed energy results in heat or carbon dioxide emissions and limited electric energy storage capabilities suppress commercial use. Therefore, the significant challenges to achieving eco-efficient aviation are increased aircraft efficiency, the development of new energy storage technologies, and the optimization of flight operations. Two major approaches for higher eco-efficiency are identified: The first one, is to take horizontal and vertical atmospheric motion phenomena into account. Where, in particular, atmospheric waves hold exciting potential. The second one is the use of the regeneration ability of electric aircraft. The fusion of both strategies is expected to improve efficiency. The objective is to reduce energy consumption during flight while not neglecting commercial usability and convenient flight characteristics. Therefore, an optimized control problem based on a general aviation class aircraft has to be developed and validated by flight experiments. The formulated approach enables a development of detailed knowledge of the potential and limitations of optimizing flight missions, considering the capability of regeneration and atmospheric influences to increase efficiency and range. Y1 - 2022 U6 - https://doi.org/10.2514/6.2022-4118 N1 - AIAA AVIATION 2022 Forum, June 27-July 1, 2022 Chicago, IL & Virtual PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Mayntz, Joscha A1 - Keimer, Jona A1 - Dahmann, Peter A1 - Hille, Sebastian A1 - Stumpf, Eike A1 - Fisher, Alex A1 - Dorrington, Graham T1 - Electrical Drive and Regeneration in General Aviation Flight with Propellers T2 - Deutscher Luft- und Raumfahrtkongress 2020 N2 - Electric flight has the potential for a more sustainable and energy-saving way of aviation compared to fossil fuel aviation. The electric motor can be used as a generator inflight to regenerate energy during descent. Three different approaches to regenerating with electric propeller powertrains are proposed in this paper. The powertrain is to be set up in a wind tunnel to determine the propeller efficiency in both working modes as well as the noise emissions. Furthermore, the planned flight tests are discussed. In preparation for these tests, a yaw stability analysis is performed with the result that the aeroplane is controllable during flight and in the most critical failure case. The paper shows the potential for inflight regeneration and addresses the research gaps in the dual role of electric powertrains for propulsion and regeneration of general aviation aircraft. KW - Propeller Aerodynamics KW - Flight Tests KW - Flight Mechanics KW - Electrical Flight KW - Inflight Regeneration, Recuperation Y1 - 2022 U6 - https://doi.org/10.25967/530100 N1 - Deutscher Luft- und Raumfahrtkongress 2020, 1. - 3. September 2020, Online PB - DGLR CY - Bonn ER - TY - CHAP A1 - Veettil, Yadu Krishna Morassery A1 - Rakshit, Shantam A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas A1 - Shabani, Bahman ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Automated Control System Strategies to Ensure Safety of PEM Fuel Cells Using Kalman Filters T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - Having well-defined control strategies for fuel cells, that can efficiently detect errors and take corrective action is critically important for safety in all applications, and especially so in aviation. The algorithms not only ensure operator safety by monitoring the fuel cell and connected components, but also contribute to extending the health of the fuel cell, its durability and safe operation over its lifetime. While sensors are used to provide peripheral data surrounding the fuel cell, the internal states of the fuel cell cannot be directly measured. To overcome this restriction, Kalman Filter has been implemented as an internal state observer. Other safety conditions are evaluated using real-time data from every connected sensor and corrective actions automatically take place to ensure safety. The algorithms discussed in this paper have been validated thorough Model-in-the-Loop (MiL) tests as well as practical validation at a dedicated test bench. KW - control system KW - PEM fuel cells KW - Kalman filter Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - https://doi.org/10.1007/978-981-19-3179-6_55 SN - 2195-4356 N1 - 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, 23 November 2021 SP - 296 EP - 299 PB - Springer Nature CY - Singapore ER - TY - CHAP A1 - Schopen, Oliver A1 - Shabani, Bahman A1 - Esch, Thomas A1 - Kemper, Hans A1 - Shah, Neel ED - Rahim, S.A. ED - As'arry, A. ED - Zuhri, M.Y.M. ED - Harmin, M.Y. ED - Rezali, K.A.M. ED - Hairuddin, A.A. T1 - Quantitative evaluation of health management designs for fuel cell systems in transport vehicles T2 - 2nd UNITED-SAIG International Conference Proceedings N2 - Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified. KW - aviation application KW - health management systems KW - fuel cell systems Y1 - 2022 N1 - 2nd UNITED-SAIG International Conference, 23-24 May 2022, Putrajaya, Malaysia SP - 1 EP - 3 ER - TY - CHAP A1 - Thoma, Andreas A1 - Stiemer, Luc A1 - Braun, Carsten A1 - Fisher, Alex A1 - Gardi, Alessandro G. T1 - Potential of hybrid neural network local path planner for small UAV in urban environments T2 - AIAA SCITECH 2023 Forum N2 - This work proposes a hybrid algorithm combining an Artificial Neural Network (ANN) with a conventional local path planner to navigate UAVs efficiently in various unknown urban environments. The proposed method of a Hybrid Artificial Neural Network Avoidance System is called HANNAS. The ANN analyses a video stream and classifies the current environment. This information about the current Environment is used to set several control parameters of a conventional local path planner, the 3DVFH*. The local path planner then plans the path toward a specific goal point based on distance data from a depth camera. We trained and tested a state-of-the-art image segmentation algorithm, PP-LiteSeg. The proposed HANNAS method reaches a failure probability of 17%, which is less than half the failure probability of the baseline and around half the failure probability of an improved, bio-inspired version of the 3DVFH*. The proposed HANNAS method does not show any disadvantages regarding flight time or flight distance. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-2359 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Muscarello, Vincenzo A1 - Marzocca, Pier T1 - A sensitivity study on aeroelastic instabilities of slender wings with a large propeller JF - AIAA SCITECH 2023 Forum N2 - Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan. These highly flexible dynamic systems can exhibit uncommon aeroelastic instabilities, which should be carefully investigated to ensure safe operation. The interaction between the propeller and the wing is of particular importance. It is known that whirl flutter is stabilized by wing motion and wing aerodynamics. This paper investigates the effect of a propeller onto wing flutter as a function of span position and mounting stiffness between the propeller and wing. The analysis of a comparison between a tractor and pusher configuration has shown that the coupled system is more stable than the standalone wing for propeller positions near the wing tip for both configurations. The wing fluttermechanism is mostly affected by the mass of the propeller and the resulting change in eigenfrequencies of the wing. For very weak mounting stiffnesses, whirl flutter occurs, which was shown to be stabilized compared to a standalone propeller due to wing motion. On the other hand, the pusher configuration is, as to be expected, the more critical configuration due to the attached mass behind the elastic axis. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-1893 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online SP - 1 EP - 14 PB - AIAA CY - Reston, Va. ER - TY - JOUR A1 - Bergmann, Ole A1 - Möhren, Felix A1 - Braun, Carsten A1 - Janser, Frank T1 - On the influence of elasticity on swept propeller noise JF - AIAA SCITECH 2023 Forum N2 - High aerodynamic efficiency requires propellers with high aspect ratios, while propeller sweep potentially reduces noise. Propeller sweep and high aspect ratios increase elasticity and coupling of structural mechanics and aerodynamics, affecting the propeller performance and noise. Therefore, this paper analyzes the influence of elasticity on forward-swept, backward-swept, and unswept propellers in hover conditions. A reduced-order blade element momentum approach is coupled with a one-dimensional Timoshenko beam theory and Farassat's formulation 1A. The results of the aeroelastic simulation are used as input for the aeroacoustic calculation. The analysis shows that elasticity influences noise radiation because thickness and loading noise respond differently to deformations. In the case of the backward-swept propeller, the location of the maximum sound pressure level shifts forward by 0.5 °, while in the case of the forward-swept propeller, it shifts backward by 0.5 °. Therefore, aeroacoustic optimization requires the consideration of propeller deformation. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-0210 N1 - Session: Propeller, Open Rotor, and Rotorcraft Noise II AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, MD & Online PB - AIAA CY - Reston, Va. ER - TY - GEN A1 - Hille, Sebastian A1 - Stumpf, Eike A1 - Mayntz, Joscha A1 - Dahmann, Peter T1 - Prediction of sound exposure caused by a landing motor glider with recuperating propellers T2 - AIAA SCITECH 2023 Forum N2 - This paper presents an approach to predicting the sound exposure on the ground caused by a landing aircraft with recuperating propellers. The noise source along the trajectory of a flight specified for a steeper approach is simulated based on measurements of sound power levels and additional parameters of a single propeller placed in a wind tunnel. To validate the measured data/measurement results, these simulations are also supported by overflight measurements of a test aircraft. It is shown that the simple source models of propellers do not provide fully satisfactory results since the sound levels are estimated too low. Nevertheless, with a further reference comparison, margins for an acceptable increase in the sound power level of the aircraft on its now steeper approach path could be estimated. Thus, in this case, a +7 dB increase in SWL would not increase the SEL compared to the conventional approach within only 2 km ahead of the airfield. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-0211 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Möhren, Felix A1 - Bergmann, Ole A1 - Janser, Frank A1 - Braun, Carsten T1 - On the determination of harmonic propeller loads T2 - AIAA SCITECH 2023 Forum N2 - Dynamic loads significantly impact the structural design of propeller blades due to fatigue and static strength. Since propellers are elastic structures, deformations and aerodynamic loads are coupled. In the past, propeller manufacturers established procedures to determine unsteady aerodynamic loads and the structural response with analytical steady-state calculations. According to the approach, aeroelastic coupling primarily consists of torsional deformations. They neglect bending deformations, deformation velocities, and inertia terms. This paper validates the assumptions above for a General Aviation propeller and a lift propeller for urban air mobility or large cargo drones. Fully coupled reduced-order simulations determine the dynamic loads in the time domain. A quasi-steady blade element momentum approach transfers loads to one-dimensional finite beam elements. The simulation results are in relatively good agreement with the analytical method for the General Aviation propeller but show increasing errors for the slender lift propeller. The analytical approach is modified to consider the induced velocities. Still, inertia and velocity proportional terms play a significant role for the lift propeller due to increased elasticity. The assumption that only torsional deformations significantly impact the dynamic loads of propellers is not valid. Adequate determination of dynamic loads of such designs requires coupled aeroelastic simulations or advanced analytical procedures. Y1 - 2023 U6 - https://doi.org/10.2514/6.2023-2404 N1 - AIAA SCITECH 2023 Forum, 23-27 January 2023, National Harbor, Md & Online PB - AIAA ER - TY - CHAP A1 - Heimes, Heiner Hans A1 - Kampker, Achim A1 - Kehrer, Mario A1 - Dünnwald, Simon A1 - Heetfeld, Lennart A1 - Polzenberg, Jens A1 - Budde, Lucas A1 - Keusen, Maximilian A1 - Pandey, Rahul A1 - Röth, Thilo ED - Kampker, Achim ED - Heimes, Heiner Hans T1 - Fahrzeugstruktur T2 - Elektromobilität: Grundlagen einer Fortschrittstechnologie N2 - Um sowohl Treibhausgas-Emissionen zu verringern als auch Kraftstoffressourcen zu schonen, wird zunehmend an einer Transformation konventionell angetriebener Kraftfahrzeuge hin zu elektrifizierten Antriebskonzepten gearbeitet. Basierend auf herkömmlichen Fahrzeugen mit Verbrennungsmotor wurde eine Vielzahl neuer Antriebssysteme mit verschiedenem Elektrifizierungsgrad entwickelt. Mitte der 1990er-Jahre kamen erste Fahrzeuge mit einem Hybridantrieb auf den Markt. Die Kombination aus Verbrennungs- und Elektromotor erlaubt eine Verbrauchsreduktion und Bremsenergierückgewinnung sowie lokal emissionsfreies Fahren. Y1 - 2023 SN - 978-3-662-65811-6 (Print) SN - 978-3-662-65812-3 (Online) U6 - https://doi.org/10.1007/978-3-662-65812-3_5 N1 - Corresponding author: Heiner Hans Heimes SP - 69 EP - 106 PB - Springer Vieweg CY - Berlin ER - TY - CHAP A1 - Heimes, Heiner Hans A1 - Kampker, Achim A1 - Dorn, Benjamin A1 - Kehrer, Mario A1 - Dünnwald, Simon A1 - Badura, Dennis A1 - Terren, Maximilian A1 - Röth, Thilo ED - Kampker, Achim ED - Heimes, Heiner Hans T1 - Produktionsprozesse der Fahrzeugstruktur T2 - Elektromobilität: Grundlagen einer Fortschrittstechnologie Y1 - 2023 SN - 978-3-662-65811-6 (Print) SN - 978-3-662-65812-3 (Online) U6 - https://doi.org/10.1007/978-3-662-65812-3_13 N1 - Corresponding author: Benjamin Dorn SP - 227 EP - 247 PB - Springer Vieweg CY - Berlin ER - TY - BOOK A1 - Janser, Frank A1 - Havermann, Marc A1 - Hoeveler, Bastian A1 - Hertz, Cyril A1 - Bergmann, Ole T1 - Strömungslehre und Aerodynamik : inkompressible Profile und Tragflügelaerodynamik, Band 2 N2 - Das vorliegende Buch dient als Grundlage für die Bachelor- und Master-Ausbildung von Studierenden im Fachgebiet Strömungslehre und Aerodynamik. Im hier behandelten Teilbereich der inkompressiblen Profile und Tragflügelaerodynamik werden schwerpunktmäßig die folgenden Themen besprochen: - Profilaerodynamik - Tragflügelaerodynamik - Flugzeugpolare - Methoden zur Flugbereichserweiterung - Schwebeschub und Schwebeleistung - Propellerblattaerodynamik - Numerische Methoden zur Tragflügelberechnung Y1 - 2023 SN - 978-3-8107-0261-6 PB - Mainz CY - Aachen ET - 4. Auflage ER -