TY - CHAP A1 - Lahrs, Lennart A1 - Krisam, Pierre A1 - Herrmann, Ulf T1 - Envisioning a collaborative energy system planning platform for the energy transition at the district level T2 - The 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems N2 - Residential and commercial buildings account for more than one-third of global energy-related greenhouse gas emissions. Integrated multi-energy systems at the district level are a promising way to reduce greenhouse gas emissions by exploiting economies of scale and synergies between energy sources. Planning district energy systems comes with many challenges in an ever-changing environment. Computational modelling established itself as the state-of-the-art method for district energy system planning. Unfortunately, it is still cumbersome to combine standalone models to generate insights that surpass their original purpose. Ideally, planning processes could be solved by using modular tools that easily incorporate the variety of competing and complementing computational models. Our contribution is a vision for a collaborative development and application platform for multi-energy system planning tools at the district level. We present challenges of district energy system planning identified in the literature and evaluate whether this platform can help to overcome these challenges. Further, we propose a toolkit that represents the core technical elements of the platform. Lastly, we discuss community management and its relevance for the success of projects with collaboration and knowledge sharing at their core. KW - Energy system planning KW - District energy planning platform KW - District data model KW - Renewable energy integration Y1 - 2023 U6 - http://dx.doi.org/10.52202/069564-0284 N1 - 25-30 JUNE, 2023, Las Palmas de Gran Canaria, Spain SP - 3163 EP - 3170 PB - Procedings of ECOS 2023 ER - TY - CHAP A1 - Schulte, Jonas A1 - Schwager, Christian A1 - Noureldin, Kareem A1 - May, Martin A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Gradient controlled startup procedure of a molten-salt power-to-heat energy storage plant based on dynamic process simulation T2 - SolarPACES: Solar Power & Chemical Energy Systems N2 - The integration of high temperature thermal energy storages into existing conventional power plants can help to reduce the CO2 emissions of those plants and lead to lower capital expenditures for building energy storage systems, due to the use of synergy effects [1]. One possibility to implement that, is a molten salt storage system with a powerful power-to-heat unit. This paper presents two possible control concepts for the startup of the charging system of such a facility. The procedures are implemented in a detailed dynamic process model. The performance and safety regarding the film temperatures at heat transmitting surfaces are investigated in the process simulations. To improve the accuracy in predicting the film temperatures, CFD simulations of the electrical heater are carried out and the results are merged with the dynamic model. The results show that both investigated control concepts are safe regarding the temperature limits. The gradient controlled startup performed better than the temperature-controlled startup. Nevertheless, there are several uncertainties that need to be investigated further. KW - Power plants KW - Energy storage KW - Associated liquids Y1 - 2023 SN - 978-0-7354-4623-6 U6 - http://dx.doi.org/10.1063/5.0148741 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 27th International Conference on Concentrating Solar Power and Chemical Energy Systems 27 September–1 October 2021 Online IS - 2815 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Schwager, Christian A1 - Angele, Florian A1 - Schwarzbözl, Peter A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Model predictive assistance for operational decision making in molten salt receiver systems T2 - SolarPACES: Solar Power & Chemical Energy Systems N2 - Despite the challenges of pioneering molten salt towers (MST), it remains the leading technology in central receiver power plants today, thanks to cost effective storage integration and high cost reduction potential. The limited controllability in volatile solar conditions can cause significant losses, which are difficult to estimate without comprehensive modeling [1]. This paper presents a Methodology to generate predictions of the dynamic behavior of the receiver system as part of an operating assistance system (OAS). Based on this, it delivers proposals if and when to drain and refill the receiver during a cloudy period in order maximize the net yield and quantifies the amount of net electricity gained by this. After prior analysis with a detailed dynamic two-phase model of the entire receiver system, two different reduced modeling approaches where developed and implemented in the OAS. A tailored decision algorithm utilizes both models to deliver the desired predictions efficiently and with appropriate accuracy. KW - Power plants KW - Associated liquids KW - Decision theory KW - Electrochemistry Y1 - 2023 SN - 978-0-7354-4623-6 U6 - http://dx.doi.org/10.1063/5.0151514 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - 27th International Conference on Concentrating Solar Power and Chemical Energy Systems 27 September–1 October 2021 Online IS - 2815 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Klinkel, Sven ED - Yang, J. T1 - Influence of slab deflection on the out-of-plane capacity of unreinforced masonry partition walls JF - Engineering Structures N2 - Severe damage of non-structural elements is noticed in previous earthquakes, causing high economic losses and posing a life threat for the people. Masonry partition walls are one of the most commonly used non-structural elements. Therefore, their behaviour under earthquake loading in out-of-plane (OOP) direction is investigated by several researches in the past years. However, none of the existing experimental campaigns or analytical approaches consider the influence of prior slab deflection on OOP response of partition walls. Moreover, none of the existing construction techniques for the connection of partition walls with surrounding reinforced concrete (RC) is investigated for the combined slab deflection and OOP loading. However, the inevitable time-dependent behaviour of RC slabs leads to high values of final slab deflections which can further influence boundary conditions of partition walls. Therefore, a comprehensive study on the influence of slab deflection on the OOP capacity of masonry partitions is conducted. In the first step, experimental tests are carried out. Results of experimental tests are further used for the calibration of the numerical model employed for a parametric study. Based on the results, behaviour under combined loading for different construction techniques is explained. The results show that slab deflection leads either to severe damage or to a high reduction of OOP capacity. Existing practical solutions do not account for these effects. In this contribution, recommendations to overcome the problems of combined slab deflection and OOP loading on masonry partition walls are given. Possible interaction of in-plane (IP) loading, with the combined slab deflection and OOP loading on partition walls, is not investigated in this study. KW - Masonry partition walls KW - Earthquake KW - Out-of-plane capacity KW - Slab deflection Y1 - 2023 U6 - http://dx.doi.org/10.1016/j.engstruct.2022.115342 SN - 0141-0296 VL - 276 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Baier, Ralph A1 - Brauner, Philipp A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - Liehner, Luca A1 - Pütz, Sebastian A1 - Schneider, Sebastian A1 - Schollemann, Alexander A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Mertens, Alexander A1 - Nagel, Saskia K. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena ED - Brecher, Christian ED - Schuh, Günther ED - van der Alst, Wil ED - Jarke, Matthias ED - Piller, Frank T. ED - Padberg, Melanie T1 - Human-centered work design for the internet of production T2 - Internet of production - fundamentals, applications and proceedings N2 - Like all preceding transformations of the manufacturing industry, the large-scale usage of production data will reshape the role of humans within the sociotechnical production ecosystem. To ensure that this transformation creates work systems in which employees are empowered, productive, healthy, and motivated, the transformation must be guided by principles of and research on human-centered work design. Specifically, measures must be taken at all levels of work design, ranging from (1) the work tasks to (2) the working conditions to (3) the organizational level and (4) the supra-organizational level. We present selected research across all four levels that showcase the opportunities and requirements that surface when striving for human-centered work design for the Internet of Production (IoP). (1) On the work task level, we illustrate the user-centered design of human-robot collaboration (HRC) and process planning in the composite industry as well as user-centered design factors for cognitive assistance systems. (2) On the working conditions level, we present a newly developed framework for the classification of HRC workplaces. (3) Moving to the organizational level, we show how corporate data can be used to facilitate best practice sharing in production networks, and we discuss the implications of the IoP for new leadership models. Finally, (4) on the supra-organizational level, we examine overarching ethical dimensions, investigating, e.g., how the new work contexts affect our understanding of responsibility and normative values such as autonomy and privacy. Overall, these interdisciplinary research perspectives highlight the importance and necessary scope of considering the human factor in the IoP. KW - Responsibility KW - Privacy KW - Digital leadership KW - Best practice sharing KW - Cognitive assistance system KW - Human-robot collaboration KW - Human-centered work design Y1 - 2023 SN - 978-3-030-98062-7 U6 - http://dx.doi.org/10.1007/978-3-030-98062-7_19-1 N1 - Part of the book series: Interdisciplinary Excellence Accelerator Series (IDEAS) SP - 1 EP - 23 PB - Springer CY - Cham ER - TY - CHAP A1 - Steuer-Dankert, Linda T1 - Training future skills - sustainability, interculturality & innovation in a digital design thinking format T2 - Proceedings of the 19th International CDIO Conference N2 - The complex questions of today for a world of tomorrow are characterized by their global impact. Solutions must therefore not only be sustainable in the sense of the three pillars of sustainability (economic, environmental, and social) but must also function globally. This goes hand in hand with the need for intercultural acceptance of developed services and products. To achieve this, engineers, as the problem solvers of the future, must be able to work in intercultural teams on appropriate solutions, and be sensitive to intercultural perspectives. To equip the engineers of the future with the so-called future skills, teaching concepts are needed in which students can acquire these methods and competencies in application-oriented formats. The presented course "Applying Design Thinking - Sustainability, Innovation and Interculturality" was developed to teach future skills from the competency areas Digital Key Competencies, Classical Competencies and Transformative Competencies. The CDIO Standard 3.0, in particular the standards 5, 6, 7 and 8, was used as a guideline. The course aims to prepare engineering students from different disciplines and cultures for their future work in an international environment by combining a digital teaching format with an interdisciplinary, transdisciplinary and intercultural setting for solving sustainability challenges. The innovative moment lies in the digital application of design thinking and the inclusion of intercultural as well as trans- and interdisciplinary perspectives in innovation development processes. In this paper, the concept of the course will be presented in detail and the particularities of a digital implementation of design thinking will be addressed. Subsequently, the potentials and challenges will be reflected and practical advice for integrating design thinking in engineering education will be given. KW - Design Thinking KW - Sustainability KW - Future Skills KW - Interculturality KW - Interdisciplinarity Y1 - 2023 N1 - Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26-29, 2023 ER - TY - CHAP A1 - Stollenwerk, Dominik A1 - Franzke, Till A1 - Maurer, Florian A1 - Reinkensmeier, Sebastian A1 - Kim, Franken A1 - Tambornino, Philipp A1 - Haas, Florian A1 - Rieke, Christian A1 - Hermanuz, Andreas A1 - Borchert, Jörg A1 - Ritz, Thomas A1 - Sander, Volker ED - Proff, Heike T1 - Smarte Ladesäulen : Netz- und Marktdienliches öffentliches Laden T2 - Towards the New Normal in Mobility : Technische und betriebswirtschaftliche Aspekte N2 - Stand 01.01.2022 sind in Deutschland 618.460 elektrisch angetriebene KFZ zugelassen. Insgesamt sind derzeit 48.540.878 KFZ zugelassen, was einer Elektromobilitätsquote von ca. 1,2 % entspricht. Derzeit werden Elektromobile über Ladestationen oder Steckdosen mit dem Stromnetz verbunden und üblicherweise mit der vollen Ladekapazität des Anschlusses aufgeladen, bis das Batteriemanagementsystem des Fahrzeugs abhängig vom Ladezustand der Batterie die Ladeleistung reduziert. Y1 - 2023 SN - 978-3-658-39437-0 (Print) SN - 978-3-658-39438-7 (Online) U6 - http://dx.doi.org/10.1007/978-3-658-39438-7_18 SP - 287 EP - 304 PB - Springer Gabler CY - Wiesbaden ER - TY - JOUR A1 - Maurer, Florian A1 - Rieke, Christian A1 - Schemm, Ralf A1 - Stollenwerk, Dominik T1 - Analysis of an urban grid with high photovoltaic and e-mobility penetration JF - Energies N2 - This study analyses the expected utilization of an urban distribution grid under high penetration of photovoltaic and e-mobility with charging infrastructure on a residential level. The grid utilization and the corresponding power flow are evaluated, while varying the control strategies and photovoltaic installed capacity in different scenarios. Four scenarios are used to analyze the impact of e-mobility. The individual mobility demand is modelled based on the largest German studies on mobility “Mobilität in Deutschland”, which is carried out every 5 years. To estimate the ramp-up of photovoltaic generation, a potential analysis of the roof surfaces in the supply area is carried out via an evaluation of an open solar potential study. The photovoltaic feed-in time series is derived individually for each installed system in a resolution of 15 min. The residential consumption is estimated using historical smart meter data, which are collected in London between 2012 and 2014. For a realistic charging demand, each residential household decides daily on the state of charge if their vehicle requires to be charged. The resulting charging time series depends on the underlying behavior scenario. Market prices and mobility demand are therefore used as scenario input parameters for a utility function based on the current state of charge to model individual behavior. The aggregated electricity demand is the starting point of the power flow calculation. The evaluation is carried out for an urban region with approximately 3100 residents. The analysis shows that increased penetration of photovoltaics combined with a flexible and adaptive charging strategy can maximize PV usage and reduce the need for congestion-related intervention by the grid operator by reducing the amount of kWh charged from the grid by 30% which reduces the average price of a charged kWh by 35% to 14 ct/kWh from 21.8 ct/kWh without PV optimization. The resulting grid congestions are managed by implementing an intelligent price or control signal. The analysis took place using data from a real German grid with 10 subgrids. The entire software can be adapted for the analysis of different distribution grids and is publicly available as an open-source software library on GitHub. KW - distribution grid simulation KW - smart-charging KW - e-mobility Y1 - 2023 U6 - http://dx.doi.org/10.3390/en16083380 SN - 1996-1073 N1 - This article belongs to the Special Issue "Advanced Solutions for the Efficient Integration of Electric Vehicles in Electricity Grids" N1 - Corresponding author: Florian Maurer VL - 16 IS - 8 PB - MDPI CY - Basel ER - TY - GEN A1 - Steuer-Dankert, Linda A1 - Bernhard, Sebastian A1 - Langolf, Jessica A1 - Leicht-Scholten, Carmen T1 - About the paradox of sustainable production and what we can do about it! T2 - Joint SCORAI-ERSCP-WUR conference on transforming consumption-production systems toward just and sustainable futures (SCP23), July 5-8, 2023, Wageningen, The Netherlands N2 - Sustainability is playing an increasingly important role. Not least due to the definition of the sustainable development goals (SDGs) in the framework of the agenda 2030 by the United Nations (UN) in 2015 (United Nations, n.d.), it has become clear that the cooperation of different actors is needed to achieve the defined 17 goals. Industry, as a global actor, has a special role to play in this. In the course of sustainable production processes and chains, the industry is confronted with the responsibility of reflecting on the consequences of its own trade on an ecological, economic, and also social level and deriving measures that, according to the definition of sustainability (Hauff, 1987), will also enable future generations to satisfy their needs. While the ecological pillar of sustainability is already being addressed by different industrial initiatives (Deloitte, 2021), it is questionable to what extent the economic and, above all, the social pillars of sustainability also play a decisive role. Accordingly, it is questionable to what extent sustainability in its triad of social, ecological, and economic aspects is taken into account holistically at all, and thus to what extent the industry contributes to achieving the 17 goals defined by the UN. This paper presents a qualitative study that explores these questions. Interviewing 31 representatives from the manufacturing industry in Germany, results indicate a Paradox of Sustainable Production expressed by a theoretical reflection of the need for focusing on people in production processes on the one hand and a lack of addressing the social pillar of sustainability in concepts on the other hand. However, while it is a troublesome finding given the striking need for sustainable development (The-Sustainable-Development-Goals-Report-2022; Kropp 2019; von Hauff 2021; Roy and Singh 2017), the paradox directly lays out a path of resolving it. This is because, given its nature, we can see that we could resolve it via the implementation of strong educational efforts trying to help the respective people of the manufacturing industry to understand the holistic and interdependent character of sustainable development (The-Sustainable-Development-Goals-Report-2022). Y1 - 2023 N1 - Volltext auf dem Opus-Server verfügbar ER - TY - GEN A1 - Steuer-Dankert, Linda A1 - Berg-Postweiler, Julia A1 - Leicht-Scholten, Carmen T1 - One does not fit all: applying anti-bias trainings in academia T2 - Twenty-third international conference on diversity in organizations, communities & nations June 22 - 23, 2023 Toronto Metropolitan University, Rogers Communication Centre Toronto, Canada N2 - Anti-bias trainings are increasingly demanded and practiced in academia and industry to increase employees’ sensitivity to discrimination, racism, and diversity. Under the heading of “Diversity Management”, anti-bias trainings are mainly offered as one-off workshops intending to raise awareness of unconscious biases, create a diversity-affirming corporate culture, awake awareness of the potential of diversity, and ultimately enable the reflection of diversity in development processes. However, coming from childhood education, research and scientific articles on the sustainable effectiveness of anti-bias in adulthood, especially in academia, are very scarce. In order to fill this research gap, the paper explores how sustainable the effects of individual anti-bias trainings on the behavior of participants are. In order to investigate this, participant observation in a qualitative pre-post setting was conducted, analyzing anti-bias trainings in an academic context. Two observers actively participated in the training sessions and documented the activities and reflection processes of the participants. Overall, the results question the effectiveness of single anti-bias trainings and show that a target-group adaptive approach is mandatory due to the background of the approach in early childhood education. Therefore, it can be concluded that anti-bias work needs to be adapted to the target group’s needs and reality of life. Furthermore, the study reveals that single anti-bias trainings must be embedded in a holistic diversity management approach to stimulate sustainable reflection processes among the target group. This paper is one of the first to scientifically evaluate anti-bias training effectiveness, especially in engineering sciences and the university context. KW - Academia KW - Engineering Habitus KW - Organizational Culture KW - Diversity Management KW - Anti-Bias Y1 - 2023 ER - TY - JOUR A1 - Dellmann, Sophia Florence A1 - Glorius, J. A1 - Litvinov, Yu A. A1 - Reifarth, R. A1 - Al-Khasawneh, Kafa A1 - Aliotta, M. A1 - Bott, L. A1 - Brückner, Benjamin A1 - Bruno, C. G. A1 - Chen, Ruijiu A1 - Davinson, T. A1 - Dickel, T. A1 - Dillmann, Iris A1 - Dmytriev, D. A1 - Erbacher, P. A1 - Freire-Fernández, D. A1 - Forstner, Oliver A1 - Geissel, H. A1 - Göbel, K. A1 - Griffin, Christopher J. A1 - Grisenti, R. A1 - Gumberidze, Alexandre A1 - Haettner, Emma A1 - Hagmann, Siegbert A1 - Heil, M. A1 - Heß, R. A1 - Hillenbrand, P.-M. A1 - Joseph, R. A1 - Jurado, B. A1 - Kozhuharov, Christophor A1 - Kulikov, I. A1 - Löher, Bastian A1 - Langer, Christoph A1 - Leckenby, Guy A1 - Lederer-Woods, C. A1 - Lestinsky, M. A1 - Litvinov, S. A. A1 - Lorenz, B. A. A1 - Lorenz, E. A1 - Marsh, J. A1 - Menz, Esther Babette A1 - Morgenroth, T. A1 - Petridis, N. A1 - Pibernat, Jerome A1 - Popp, U. A1 - Psaltis, Athanasios A1 - Sanjari, Shahab A1 - Scheidenberger, C. A1 - Sguazzin, M. A1 - Sidhu, Ragandeep Singh A1 - Spillmann, Uwe A1 - Steck, M. A1 - Stöhlker, T. A1 - Surzhykov, A. A1 - Swartz, J. A. A1 - Törnqvist, H. A1 - Varga, L. A1 - Vescovi, Diego A1 - Weick, H. A1 - Weigand, M. A1 - Woods, P. A1 - Xing, Y. A1 - Yamaguchi, Taiyo T1 - Proton capture on stored radioactive ¹¹⁸Te ions JF - EPJ Web of Conferences N2 - Experimental determination of the cross sections of proton capture on radioactive nuclei is extremely difficult. Therefore, it is of substantial interest for the understanding of the production of the p-nuclei. For the first time, a direct measurement of proton-capture cross sections on stored, radioactive ions became possible in an energy range of interest for nuclear astrophysics. The experiment was performed at the Experimental Storage Ring (ESR) at GSI by making use of a sensitive method to measure (p,γ) and (p,n) reactions in inverse kinematics. These reaction channels are of high relevance for the nucleosyn-thesis processes in supernovae, which are among the most violent explosions in the universe and are not yet well understood. The cross section of the ¹¹⁸Te(p,γ) reaction has been measured at energies of 6 MeV/u and 7 MeV/u. The heavy ions interacted with a hydrogen gas jet target. The radiative recombination process of the fully stripped ¹¹⁸Te ions and electrons from the hydrogen target was used as a luminosity monitor. An overview of the experimental method and preliminary results from the ongoing analysis will be presented. Y1 - 2023 U6 - http://dx.doi.org/10.1051/epjconf/202327911018 SN - 2100-014X N1 - Volume 279, 2023. Nuclear Physics in Astrophysics – X (NPA-X 2022). VL - 279 IS - Article Number: 11018 SP - 1 EP - 5 PB - EDP Sciences ER - TY - JOUR A1 - Hoffstadt, Kevin A1 - Cheenakula, Dheeraja A1 - Nikolausz, Marcell A1 - Krafft, Simone A1 - Harms, Hauke A1 - Kuperjans, Isabel T1 - Design and construction of a new reactor for flexible biomethanation of hydrogen JF - Fermentation N2 - The increasing share of renewable electricity in the grid drives the need for sufficient storage capacity. Especially for seasonal storage, power-to-gas can be a promising approach. Biologically produced methane from hydrogen produced from surplus electricity can be used to substitute natural gas in the existing infrastructure. Current reactor types are not or are poorly optimized for flexible methanation. Therefore, this work proposes a new reactor type with a plug flow reactor (PFR) design. Simulations in COMSOL Multiphysics ® showed promising properties for operation in laminar flow. An experiment was conducted to support the simulation results and to determine the gas fraction of the novel reactor, which was measured to be 29%. Based on these simulations and experimental results, the reactor was constructed as a 14 m long, 50 mm diameter tube with a meandering orientation. Data processing was established, and a step experiment was performed. In addition, a kLa of 1 h−1 was determined. The results revealed that the experimental outcomes of the type of flow and gas fractions are in line with the theoretical simulation. The new design shows promising properties for flexible methanation and will be tested. KW - methanation KW - plug flow reactor KW - bubble column KW - bio-methane KW - power-to-gas Y1 - 2023 U6 - http://dx.doi.org/10.3390/fermentation9080774 SN - 2311-5637 N1 - The article belongs to the Special Issue Fermentation Processes: Modeling, Optimization and Control VL - 9 IS - 8 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Berg-Postweiler, Julia A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - One size does not fit all: Applying antibias trainings in academia JF - The International Journal of Organizational Diversity N2 - Antibias training is increasingly demanded and practiced in academia and industry to increase employees’ sensitivity to discrimination, racism, and diversity. Under the heading of “Diversity Management,” antibias trainings are mainly offered as one-off workshops intending to raise awareness of unconscious biases, create a diversity-affirming corporate culture, promote awareness of the potential of diversity, and ultimately enable the reflection of diversity in development processes. However, coming from childhood education, research and scientific articles on the sustainable effectiveness of antibias in adulthood, especially in academia, are very scarce. In order to fill this research gap, the article aims to explore how sustainable the effects of individual antibias trainings on participants’ behavior are. In order to investigate this, participant observation in a qualitative pre–post setting was conducted, analyzing antibias training in an academic context. Two observers actively participated in the training sessions and documented the activities and reflection processes of the participants. Overall, the results question the effectiveness of single antibias trainings and show that a target-group adaptive approach is mandatory owing to the background of the approach in early childhood education. Therefore, antibias work needs to be adapted to the target group’s needs and realities of life. Furthermore, the study reveals that single antibias trainings must be embedded in a holistic diversity management approach to stimulate sustainable reflection processes among the target group. This article is one of the first to scientifically evaluate antibias training effectiveness, especially in engineering sciences and the university context. KW - Antibias KW - Diversity Management KW - Organizational Culture KW - Engineering Habitus Y1 - 2023 U6 - http://dx.doi.org/10.18848/2328-6261/CGP/v24i01/1-23 SN - 2328-6261 (Print) SN - 2328-6229 (Online) VL - 24 IS - 1 SP - 1 EP - 23 PB - Common Ground Research Networks ER - TY - CHAP A1 - Nierle, Elisabeth A1 - Pieper, Martin T1 - Measuring social impacts in engineering education to improve sustainability skills T2 - European Society for Engineering Education (SEFI) N2 - In times of social climate protection movements, such as Fridays for Future, the priorities of society, industry and higher education are currently changing. The consideration of sustainability challenges is increasing. In the context of sustainable development, social skills are crucial to achieving the United Nations Sustainable Development Goals (SDGs). In particular, the impact that educational activities have on people, communities and society is therefore coming to the fore. Research has shown that people with high levels of social competence are better able to manage stressful situations, maintain positive relationships and communicate effectively. They are also associated with better academic performance and career success. However, especially in engineering programs, the social pillar is underrepresented compared to the environmental and economic pillars. In response to these changes, higher education institutions should be more aware of their social impact - from individual forms of teaching to entire modules and degree programs. To specifically determine the potential for improvement and derive resulting change for further development, we present an initial framework for social impact measurement by transferring already established approaches from the business sector to the education sector. To demonstrate the applicability, we measure the key competencies taught in undergraduate engineering programs in Germany. The aim is to prepare the students for success in the modern world of work and their future contribution to sustainable development. Additionally, the university can include the results in its sustainability report. Our method can be applied to different teaching methods and enables their comparison. KW - Social impact measurement KW - Key competences KW - Sustainable engineering education KW - Future skills Y1 - 2023 U6 - http://dx.doi.org/10.21427/QPR4-0T22 N1 - 51st Annual Conference of the European Society for Engineering Education (SEFI) N1 - Corresponding Author: Elisabeth Nierle ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Hoffstadt, Kevin A1 - Krafft, Simone A1 - Reinecke, Diana A1 - Klose, Holger A1 - Kuperjans, Isabel A1 - Grömping, Markus T1 - Anaerobic digestion of algal–bacterial biomass of an Algal Turf Scrubber system JF - Biomass Conversion and Biorefinery N2 - This study investigated the anaerobic digestion of an algal–bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal–bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4%) and a mixture of manure and maize silage (107.4%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6%) and percolated green waste (43.5%) inocula. To further evaluate the potential of algal–bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7–12.5 MWh a−1) can be gained through the addition of algal–bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies. KW - Biogas KW - Methane KW - Algal Turf Scrubber KW - Algal–bacterial bioflm KW - Circular bioeconomy Y1 - 2022 U6 - http://dx.doi.org/10.1007/s13399-022-03236-z SN - 2190-6823 N1 - Corresponding author: Dheeraja Cheenakula VL - 13 SP - 15 Seiten PB - Springer CY - Berlin ER - TY - CHAP A1 - Hebel, Christoph A1 - Herrmann, Ulf A1 - Ritz, Thomas A1 - Röth, Thilo A1 - Anthrakidis, Anette A1 - Böker, Jörg A1 - Franzke, Till A1 - Grodzki, Thomas A1 - Merkens, Torsten A1 - Schöttler, Mirjam T1 - FlexSHARE – Methodisches Framework zur innovativen Gestaltung der urbanen Mobilität durch Sharing- Angebote T2 - Transforming Mobility – What Next? N2 - Das Ziel des INTERREG-Projektes „SHAREuregio“ (FKZ: 34.EFRE-0300134) ist es, grenzüberschreitende Mobilität in der Euregio Rhein-Maas-Nord zu ermöglichen und zu fördern. Dazu soll ein elektromobiles Car- und Bikesharing- System entwickelt und in der Stadt Mönchengladbach, im Kreis Viersen sowie in den Gemeinden Roermond und Venlo (beide NL) zusammen mit den Partnern Wirtschaftsförderung Mönchengladbach, Wirtschaftsförderung für den Kreis Viersen, NEW AG, Goodmoovs (NL), Greenflux (NL) und der FH Aachen implementiert werden. Zunächst richtet sich das Angebot, bestehend aus 40 Elektroautos und 40 Elektrofahrrädern, an Unternehmen und wird nach einer Erprobungsphase, mit einer größeren Anzahl an Fahrzeugen, auch für Privatpersonen verfügbar gemacht werden. Die Fahrzeuge stehen bei den jeweiligen Anwendungspartnern in Deutschland und den Niederlanden. Im Rahmen dieses Projektes hat die FH Aachen „FlexSHARE“ entwickelt – ein methodisches Framework zur innovativen Gestaltung urbaner Sharing- Angebote. Das Framework ermöglicht es, anhand von messbaren Kenngrößen, bedarfsgerechte und auf die Region abgestimmte Sharing-Systeme zu entwickeln. Y1 - 2022 SN - 978-3-658-36429-8 U6 - http://dx.doi.org/10.1007/978-3-658-36430-4_10 N1 - Tagungsband zum 13. Wissenschaftsforum Mobilität, Beiträge des Wissenschaftsforums SP - 153 EP - 169 PB - Springer Gabler CY - Wiesbaden ER - TY - CHAP A1 - Mertens, Alexander A1 - Brauner, Philipp A1 - Baier, Ralph A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - van Dyck, Marc A1 - Kong, Iris A1 - Königs, Peter A1 - Kordtomeikel, Frauke A1 - Liehner, Gian Luca A1 - Pütz, Sebastian A1 - Rodermann, Niklas A1 - Schaar, Anne Kathrin A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Wlecke, Shari A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank T. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena ED - Michael, Judith ED - Pfeiffer, Jérôme ED - Wortmann, Andreas T1 - Modelling Human Factors in Cyber Physical Production Systems by the Integration of Human Digital Shadows T2 - Modellierung 2022 Satellite Events N2 - The future of industrial manufacturing and production will increasingly manifest in the form of cyber-physical production systems. Here, Digital Shadows will act as mediators between the physical and digital world to model and operationalize the interactions and relationships between different entities in production systems. Until now, the associated concepts have been primarily pursued and implemented from a technocentric perspective, in which human actors play a subordinate role, if they are considered at all. This paper outlines an anthropocentric approach that explicitly considers the characteristics, behavior, and traits and states of human actors in socio-technical production systems. For this purpose, we discuss the potentials and the expected challenges and threats of creating and using Human Digital Shadows in production. KW - human digital shadow KW - cyber physical production system KW - human factors Y1 - 2022 U6 - http://dx.doi.org/10.18420/modellierung2022ws-018 SP - 147 EP - 149 PB - GI Gesellschaft für Informatik CY - Bonn ER - TY - CHAP A1 - Brauner, Philipp A1 - Vervier, Luisa A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - Steuer-Dankert, Linda A1 - Schneider, Sebastian A1 - Baier, Ralph A1 - Ziefle, Martina A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Mertens, Alexander A1 - Nagel, Saskia K. T1 - Organization Routines in Next Generation Manufacturing T2 - Forecasting Next Generation Manufacturing N2 - Next Generation Manufacturing promises significant improvements in performance, productivity, and value creation. In addition to the desired and projected improvements regarding the planning, production, and usage cycles of products, this digital transformation will have a huge impact on work, workers, and workplace design. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these changes, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the organization dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we highlight seven areas in which the digital transformation of production will change how we work, how we organize the work within a company, how we evaluate these changes, and how employment and labor rights will be affected across company boundaries. The experts are unsure whether the use of collaborative robots in factories will replace traditional robots by 2030. They believe that the use of hybrid intelligence will supplement human decision-making processes in production environments. Furthermore, they predict that artificial intelligence will lead to changes in management processes, leadership, and the elimination of hierarchies. However, to ensure that social and normative aspects are incorporated into the AI algorithms, restricting measurement of individual performance will be necessary. Additionally, AI-based decision support can significantly contribute toward new, socially accepted modes of leadership. Finally, the experts believe that there will be a reduction in the workforce by the year 2030. Y1 - 2022 SN - 978-3-031-07734-0 U6 - http://dx.doi.org/10.1007/978-3-031-07734-0_5 SP - 75 EP - 94 PB - Springer CY - Cham ER - TY - CHAP A1 - Hinke, Christian A1 - Vervier, Luisa A1 - Brauner, Philipp A1 - Schneider, Sebastian A1 - Steuer-Dankert, Linda A1 - Ziefle, Martina A1 - Leicht-Scholten, Carmen T1 - Capability configuration in next generation manufacturing T2 - Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models N2 - Industrial production systems are facing radical change in multiple dimensions. This change is caused by technological developments and the digital transformation of production, as well as the call for political and social change to facilitate a transformation toward sustainability. These changes affect both the capabilities of production systems and companies and the design of higher education and educational programs. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these concepts, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the capabilities dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we discuss the benefits of capturing expert knowledge and making it accessible to newcomers, especially in highly specialized industries. The experts argue that in order to cope with the challenges and circumstances of today’s world, students must already during their education at university learn how to work with AI and other technologies. This means that study programs must change and that universities must adapt their structural aspects to meet the needs of the students. Y1 - 2022 SN - 978-3-031-07733-3 U6 - http://dx.doi.org/10.1007/978-3-031-07734-0_6 SP - 95 EP - 106 PB - Springer CY - Cham ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - Perceiving diversity : an explorative approach in a complex research organization. T2 - Diversity and discrimination in research organizations N2 - Diversity management is seen as a decisive factor for ensuring the development of socially responsible innovations (Beacham and Shambaugh, 2011; Sonntag, 2014; López, 2015; Uebernickel et al., 2015). However, many diversity management approaches fail due to a one-sided consideration of diversity (Thomas and Ely, 2019) and a lacking linkage between the prevailing organizational culture and the perception of diversity in the respective organization. Reflecting the importance of diverse perspectives, research institutions have a special responsibility to actively deal with diversity, as they are publicly funded institutions that drive socially relevant development and educate future generations of developers, leaders and decision-makers. Nevertheless, only a few studies have so far dealt with the influence of the special framework conditions of the science system on diversity management. Focusing on the interdependency of the organizational culture and diversity management especially in a university research environment, this chapter aims in a first step to provide a theoretical perspective on the framework conditions of a complex research organization in Germany in order to understand the system-specific factors influencing diversity management. In a second step, an exploratory cluster analysis is presented, investigating the perception of diversity and possible influencing factors moderating this perception in a scientific organization. Combining both steps, the results show specific mechanisms and structures of the university research environment that have an impact on diversity management and rigidify structural barriers preventing an increase of diversity. The quantitative study also points out that the management level takes on a special role model function in the scientific system and thus has an influence on the perception of diversity. Consequently, when developing diversity management approaches in research organizations, it is necessary to consider the top-down direction of action, the special nature of organizational structures in the university research environment as well as the special role of the professorial level as role model for the scientific staff. KW - Diversity management KW - Organizational culture KW - Change management KW - Psychological concepts KW - Perception Y1 - 2022 SN - 978-1-80117-959-1 (Print) SN - 978-1-80117-956-0 (Online) U6 - http://dx.doi.org/10.1108/978-1-80117-956-020221010 SP - 365 EP - 392 PB - Emerald Publishing Limited CY - Bingley ER -