TY - CHAP A1 - Dey, Thomas A1 - Elsen, Ingo A1 - Ferrein, Alexander A1 - Frauenrath, Tobias A1 - Reke, Michael A1 - Schiffer, Stefan ED - Makedon, Fillia T1 - CO2 Meter: a do-it-yourself carbon dioxide measuring device for the classroom T2 - PETRA 2021: The 14th PErvasive Technologies Related to Assistive Environments Conference N2 - In this paper we report on CO2 Meter, a do-it-yourself carbon dioxide measuring device for the classroom. Part of the current measures for dealing with the SARS-CoV-2 pandemic is proper ventilation in indoor settings. This is especially important in schools with students coming back to the classroom even with high incidents rates. Static ventilation patterns do not consider the individual situation for a particular class. Influencing factors like the type of activity, the physical structure or the room occupancy are not incorporated. Also, existing devices are rather expensive and often provide only limited information and only locally without any networking. This leaves the potential of analysing the situation across different settings untapped. Carbon dioxide level can be used as an indicator of air quality, in general, and of aerosol load in particular. Since, according to the latest findings, SARS-CoV-2 can be transmitted primarily in the form of aerosols, carbon dioxide may be used as a proxy for the risk of a virus infection. Hence, schools could improve the indoor air quality and potentially reduce the infection risk if they actually had measuring devices available in the classroom. Our device supports schools in ventilation and it allows for collecting data over the Internet to enable a detailed data analysis and model generation. First deployments in schools at different levels were received very positively. A pilot installation with a larger data collection and analysis is underway. KW - embedded hardware KW - sensor networks KW - information systems KW - education KW - do-it-yourself Y1 - 2021 SN - 9781450387927 U6 - http://dx.doi.org/10.1145/3453892.3462697 N1 - PETRA '21: The 14th PErvasive Technologies Related to Assistive Environments Conference Corfu Greece 29 June 2021- 2 July 2021 SP - 292 EP - 299 PB - Association for Computing Machinery CY - New York ER - TY - CHAP A1 - Ferrein, Alexander A1 - Meeßen, Marcus A1 - Limpert, Nicolas A1 - Schiffer, Stefan ED - Lepuschitz, Wilfried T1 - Compiling ROS Schooling Curricula via Contentual Taxonomies T2 - Robotics in Education Y1 - 2021 SN - 978-3-030-67411-3 U6 - http://dx.doi.org/10.1007/978-3-030-67411-3_5 N1 - RiE: International Conference on Robotics in Education (RiE); Advances in Intelligent Systems and Computing book series (AISC, volume 1316) SP - 49 EP - 60 PB - Springer CY - Cham ER - TY - CHAP A1 - Kirsch, Maximilian A1 - Mataré, Victor A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - Integrating golog++ and ROS for Practical and Portable High-level Control T2 - 12th International Conference on Agents and Artificial Intelligence Y1 - 2020 U6 - http://dx.doi.org/10.5220/0008984406920699 ER - TY - CHAP A1 - Reke, Michael A1 - Peter, Daniel A1 - Schulte-Tigges, Joschua A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Walter, Thomas A1 - Matheis, Dominik T1 - A Self-Driving Car Architecture in ROS2 T2 - 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa Y1 - 2020 SN - 978-1-7281-4162-6 U6 - http://dx.doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020 SP - 1 EP - 6 ER - TY - JOUR A1 - Claer, Mario A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - Calibration of a Rotating or Revolving Platform with a LiDAR Sensor JF - Applied Sciences Y1 - 2019 U6 - http://dx.doi.org/10.3390/app9112238 SN - 2076-3417 VL - Volume 9 IS - issue 11, 2238 PB - MDPI CY - Basel ER - TY - CHAP A1 - Ferrein, Alexander A1 - Bharatheesha, Mukunda A1 - Schiffer, Stefan A1 - Corbato, Carlos Hernandez T1 - TRROS 2018 : Teaching Robotics with ROS Workshop at ERF 2018; Proceedings of the Workshop on Teaching Robotics with ROS (held at ERF 2018), co-located with European Robotics Forum 2018 (ERF 2018), Tampere, Finland, March 15th, 2018 T2 - CEUR Workshop Proceedings Y1 - 2019 SN - 1613-0073 IS - Vol-2329 ER - TY - CHAP A1 - Ferrein, Alexander A1 - Scholl, Ingrid A1 - Neumann, Tobias A1 - Krückel, Kai A1 - Schiffer, Stefan T1 - A system for continuous underground site mapping and exploration Y1 - 2019 U6 - http://dx.doi.org/10.5772/intechopen.85859 ER - TY - CHAP A1 - Mataré, Victor A1 - Schiffer, Stefan A1 - Ferrein, Alexander ED - Steinbauer, Gerald ED - Ferrein, Alexander T1 - golog++ : An integrative system design T2 - CogRob 2018. Cognitive Robotics Workshop : Proceedings of the 11th Cognitive Robotics Workshop 2018 co-located with 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018) Tempe, AZ, USA, October 27th, 2018 Y1 - 2019 SN - 1613-0073 SP - 29 EP - 35 ER - TY - CHAP A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - A System Layout for Cognitive Service Robots T2 - Cognitive Robot Architectures. Proceedings of EUCognition 2016 Y1 - 2017 SN - 1613-0073 N1 - CEUR-WS Vol-1855 SP - 44 EP - 45 ER - TY - CHAP A1 - Walenta, Robert A1 - Schellekens, Twan A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - A decentralised system approach for controlling AGVs with ROS T2 - AFRICON, Proceedings Y1 - 2017 SN - 978-1-5386-2775-4 U6 - http://dx.doi.org/10.1109/AFRCON.2017.8095693 SN - 2153-0033 N1 - AFRICON <2017, 18-20 Sept., Cape Town, South Africa> SP - 1436 EP - 1441 PB - IEEE ER - TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - Decision-Theoretic Planning with Fuzzy Notions in GOLOG JF - International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems N2 - In this paper we present an extension of the action language Golog that allows for using fuzzy notions in non-deterministic argument choices and the reward function in decision-theoretic planning. Often, in decision-theoretic planning, it is cumbersome to specify the set of values to pick from in the non-deterministic-choice-of-argument statement. Also, even for domain experts, it is not always easy to specify a reward function. Instead of providing a finite domain for values in the non-deterministic-choice-of-argument statement in Golog, we now allow for stating the argument domain by simply providing a formula over linguistic terms and fuzzy uents. In Golog’s forward-search DT planning algorithm, these formulas are evaluated in order to find the agent’s optimal policy. We illustrate this in the Diner Domain where the agent needs to calculate the optimal serving order. Y1 - 2016 U6 - http://dx.doi.org/10.1142/S0218488516400134 SN - 1793-6411 VL - 24 IS - Issue Suppl. 2 SP - 123 EP - 143 PB - World Scientific CY - Singapur ER - TY - CHAP A1 - Limpert, Nicolas A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - A Local Planner for Ackermann-Driven Vehicles in ROS SBPL T2 - Proceedings of the International Conference on Pattern Recognition Association of South Africa and Robotics and Mechatronics (PRASA-RobMech), 2015 Y1 - 2015 U6 - http://dx.doi.org/10.1109/RoboMech.2015.7359518 SP - 172 EP - 177 ER - TY - CHAP A1 - Goeckel, Tom A1 - Schiffer, Stefan A1 - Wagner, Hermann A1 - Lakemeyer, Gerhard T1 - The Video Conference Tool Robot ViCToR T2 - Intelligent Robotics and Applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II N2 - We present a robotic tool that autonomously follows a conversation to enable remote presence in video conferencing. When humans participate in a meeting with the help of video conferencing tools, it is crucial that they are able to follow the conversation both with acoustic and visual input. To this end, we design and implement a video conferencing tool robot that uses binaural sound source localization as its main source to autonomously orient towards the currently talking speaker. To increase robustness of the acoustic cue against noise we supplement the sound localization with a source detection stage. Also, we include a simple onset detector to retain fast response times. Since we only use two microphones, we are confronted with ambiguities on whether a source is in front or behind the device. We resolve these ambiguities with the help of face detection and additional moves. We tailor the system to our target scenarios in experiments with a four minute scripted conversation. In these experiments we evaluate the influence of different system settings on the responsiveness and accuracy of the device. Y1 - 2015 SN - 978-3-319-22876-1 U6 - http://dx.doi.org/10.1007/978-3-319-22876-1_6 N1 - Lecture Notes in Computer Science ; 9245 SP - 61 EP - 73 PB - Springer ER -