TY - CHAP A1 - Stark, Ralf A1 - Bartel, Sebastian A1 - Ditsche, Florian A1 - Esch, Thomas T1 - Design study of a 30kN LOX/LCH4 aerospike rocket engine for lunar lander application T2 - Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS N2 - Based on lunar lander concept EL3, various LOX/CH4 aerospike engines were studied. A distinction was made between single and cluster configurations as well as ideal and non-ideal contour concepts. It could be shown that non-ideal aerospike engines promise a significant payload gain. Y1 - 2023 N1 - Lausanne, July 9-13, 2023 ER - TY - CHAP A1 - Stark, Ralf A1 - Rieping, Carla A1 - Esch, Thomas T1 - The impact of guide tubes on flow separation in rocket nozzles T2 - Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS N2 - Rocket engine test facilities and launch pads are typically equipped with a guide tube. Its purpose is to ensure the controlled and safe routing of the hot exhaust gases. In addition, the guide tube induces a suction that effects the nozzle flow, namely the flow separation during transient start-up and shut-down of the engine. A cold flow subscale nozzle in combination with a set of guide tubes was studied experimentally to determine the main influencing parameters. KW - Guide Tube KW - TICTOP KW - Nozzle KW - Suction Y1 - 2023 N1 - Lausanne, July 9-13, 2023 ER - TY - JOUR A1 - Schopen, Oliver A1 - Narayan, Sriram A1 - Beckmann, Marvin A1 - Najmi, Aezid-Ul-Hassan A1 - Esch, Thomas A1 - Shabani, Bahman T1 - An EIS approach to quantify the effects of inlet air relative humidity on the performance of proton exchange membrane fuel cells: a pathway to developing a novel fault diagnostic method JF - International Journal of Hydrogen Energy N2 - In this work, the effect of low air relative humidity on the operation of a polymer electrolyte membrane fuel cell is investigated. An innovative method through performing in situ electrochemical impedance spectroscopy is utilised to quantify the effect of inlet air relative humidity at the cathode side on internal ionic resistances and output voltage of the fuel cell. In addition, algorithms are developed to analyse the electrochemical characteristics of the fuel cell. For the specific fuel cell stack used in this study, the membrane resistance drops by over 39 % and the cathode side charge transfer resistance decreases by 23 % after increasing the humidity from 30 % to 85 %, while the results of static operation also show an increase of ∼2.2 % in the voltage output after increasing the relative humidity from 30 % to 85 %. In dynamic operation, visible drying effects occur at < 50 % relative humidity, whereby the increase of the air side stoichiometry increases the drying effects. Furthermore, other parameters, such as hydrogen humidification, internal stack structure, and operating parameters like stoichiometry, pressure, and temperature affect the overall water balance. Therefore, the optimal humidification range must be determined by considering all these parameters to maximise the fuel cell performance and durability. The results of this study are used to develop a health management system to ensure sufficient humidification by continuously monitoring the fuel cell polarisation data and electrochemical impedance spectroscopy indicators. KW - PEM fuel cell KW - Electrochemical impedance spectroscopy KW - Relative air humidity KW - Active humidity control KW - Impedance analysis Y1 - 2024 SN - 0360-3199 (print) U6 - https://doi.org/10.1016/j.ijhydene.2024.01.218 SN - 1879-3487 (online) VL - 58 IS - 8 SP - 1302 EP - 1315 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Machado, Patricia Almeida A1 - Dahmann, Peter A1 - Keimer, Jona A1 - Saretzki, Charlotte A1 - Stübing, Felix A1 - Küpper, Thomas T1 - Stress profile and individual workload monitoring in general aviation pilots – an experiment’s setting T2 - 23. Annual Meeting of the German Society of Travel Medicine, Coburg, 18.-19.9.2020 Y1 - 2020 U6 - https://doi.org/10.55225/hppa.156 ER - TY - CHAP A1 - Langohr, Philipp A1 - Bung, Daniel Bernhard A1 - Crookston, Brian M. ED - Ortega-Sánchez, Miguel T1 - Hybrid investigation of labyrinth weirs: Discharge capacity and energy dissipation T2 - Proceedings of the 39th IAHR World Congress N2 - The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs. Y1 - 2022 SN - 978-90-832612-1-8 U6 - https://doi.org/10.3850/IAHR-39WC252171192022738 SN - 2521-7119 (print) SN - 2521-716X (online) N1 - 39th IAHR World Congress, 19. - 24. Juni 2022, Granada SP - 2313 EP - 2318 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - CHAP A1 - Crookston, Brian M. A1 - Bung, Daniel Bernhard ED - Ortega-Sánchez, Miguel T1 - Application of RGB-D cameras in hydraulic laboratory studies T2 - Proceedings of the 39th IAHR World Congress N2 - Non-intrusive measuring techniques have attained a lot of interest in relation to both hydraulic modeling and prototype applications. Complimenting acoustic techniques, significant progress has been made for the development of new optical methods. Computer vision techniques can help to extract new information, e. g. high-resolution velocity and depth data, from videos captured with relatively inexpensive, consumer-grade cameras. Depth cameras are sensors providing information on the distance between the camera and observed features. Currently, sensors with different working principles are available. Stereoscopic systems reference physical image features (passive system) from two perspectives; in order to enhance the number of features and improve the results, a sensor may also estimate the disparity from a detected light to its original projection (active stereo system). In the current study, the RGB-D camera Intel RealSense D435, working on such stereo vision principle, is used in different, typical hydraulic modeling applications. All tests have been conducted at the Utah Water Research Laboratory. This paper will demonstrate the performance and limitations of the RGB-D sensor, installed as a single camera and as camera arrays, applied to 1) detect the free surface for highly turbulent, aerated hydraulic jumps, for free-falling jets and for an energy dissipation basin downstream of a labyrinth weir and 2) to monitor local scours upstream and downstream of a Piano Key Weir. It is intended to share the authors’ experiences with respect to camera settings, calibration, lightning conditions and other requirements in order to promote this useful, easily accessible device. Results will be compared to data from classical instrumentation and the literature. It will be shown that even in difficult application, e. g. the detection of a highly turbulent, fluctuating free-surface, the RGB-D sensor may yield similar accuracy as classical, intrusive probes. Y1 - 2022 SN - 978-90-832612-1-8 U6 - https://doi.org/10.3850/IAHR-39WC252171192022964 SN - 2521-7119 (print) SN - 2521-716X (online) N1 - 39th IAHR World Congress, 19. - 24. Juni 2022, Granada SP - 5127 EP - 5133 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - CHAP A1 - Hülsen, Benjamin A1 - Mulsow, Niklas A. A1 - Dabrowski, Adam A1 - Brinkmann, Wiebke A1 - Gützlaff, Joel A1 - Spies, Leon A1 - Czupalla, Markus A1 - Kirchner, Frank T1 - Towards an autonomous micro rover with night survivability for lunar exploration T2 - Proceedings of the 74th International Astronautical Congress N2 - In Europe, efforts are underway to develop key technologies that can be used to explore the Moon and to exploit the resources available. This includes technologies for in-situ resource utilization (ISRU), facilitating the possibility of a future Moon Village. The Moon is the next step for humans and robots to exploit the use of available resources for longer term missions, but also for further exploration of the solar system. A challenge for effective exploration missions is to achieve a compact and lightweight robot to reduce launch costs and open up the possibility of secondary payload options. Current micro rover concepts are primarily designed to last for one day of solar illumination and show a low level of autonomy. Extending the lifetime of the system by enabling survival of the lunar night and implementing a high level of autonomy will significantly increase potential mission applications and the operational range. As a reference mission, the deployment of a micro rover in the equatorial region of the Moon is being considered. An overview of mission parameters and a detailed example mission sequence is given in this paper. The mission parameters are based on an in-depth study of current space agency roadmaps, scientific goals, and upcoming flight opportunities. Furthermore, concepts of the ongoing international micro rover developments are analyzed along with technology solutions identified for survival of lunar nights and a high system autonomy. The results provide a basis of a concise requirements set-up to allow dedicated system developments and qualification measures in the future. Y1 - 2023 N1 - 74. International Astronautical Congress (IAC-2023), October 2-6 2023, Baku, Azerbaijan PB - dfki ER - TY - CHAP A1 - Mulsow, Niklas A. A1 - Hülsen, Benjamin A1 - Gützlaff, Joel A1 - Spies, Leon A1 - Bresser, Andreas A1 - Dabrowski, Adam A1 - Czupalla, Markus A1 - Kirchner, Frank T1 - Concept and design of an autonomous micro rover for long term lunar exploration T2 - Proceedings of the 74th International Astronautical Congress N2 - Research on robotic lunar exploration has seen a broad revival, especially since the Google Lunar X-Prize increasingly brought private endeavors into play. This development is supported by national agencies with the aim of enabling long-term lunar infrastructure for in-situ operations and the establishment of a moon village. One challenge for effective exploration missions is developing a compact and lightweight robotic rover to reduce launch costs and open the possibility for secondary payload options. Existing micro rovers for exploration missions are clearly limited by their design for one day of sunlight and their low level of autonomy. For expanding the potential mission applications and range of use, an extension of lifetime could be reached by surviving the lunar night and providing a higher level of autonomy. To address this objective, the paper presents a system design concept for a lightweight micro rover with long-term mission duration capabilities, derived from a multi-day lunar mission scenario at equatorial regions. Technical solution approaches are described, analyzed, and evaluated, with emphasis put on the harmonization of hardware selection due to a strictly limited budget in dimensions and power. Y1 - 2023 N1 - 74. International Astronautical Congress (IAC-2023), October 2-6 2023, Baku, Azerbaijan PB - dfki CY - Saarbrücken ER - TY - INPR A1 - Schmülling, Max A1 - Gützlaff, Joel A1 - Czupalla, Markus T1 - A thermal simulation environment for moving objects on the lunar surface N2 - This paper presents a thermal simulation environment for moving objects on the lunar surface. The goal of the thermal simulation environment is to enable the reliable prediction of the temperature development of a given object on the lunar surface by providing the respective heat fluxes for a mission on a given travel path. The user can import any object geometry and freely define the path that the object should travel. Using the path of the object, the relevant lunar surface geometry is imported from a digital elevation model. The relevant parts of the lunar surface are determined based on distance to the defined path. A thermal model of these surface sections is generated, consisting of a porous layer on top and a denser layer below. The object is moved across the lunar surface, and its inclination is adapted depending on the slope of the terrain below it. Finally, a transient thermal analysis of the object and its environment is performed at several positions on its path and the results are visualized. The paper introduces details on the thermal modeling of the lunar surface, as well as its verification. Furthermore, the structure of the created software is presented. The robustness of the environment is verified with the help of sensitivity studies and possible improvements are presented. KW - Dynamic modeling KW - Thermal analysis KW - ESATAN-TMS KW - Lunar Surface KW - Thermal Model Y1 - 2024 U6 - https://doi.org/10.21203/rs.3.rs-3902363/v1 ER - TY - CHAP A1 - Kohlberger, David-Sharif A1 - Wild, Dominik A1 - Kasper, Stefan A1 - Czupalla, Markus T1 - Modeling and analyses of a thermal passively stabilized LEO/GEO star tracker with embedded phase change material applying the Infused Thermal Solutions (ITS) method T2 - ICES202: Satellite, Payload, and Instrument Thermal Control N2 - Phase change materials offer a way of storing excess heat and releasing it when it is needed. They can be utilized as a method to control thermal behavior without the need for additional energy. This work focuses on exploring the potential of using phase change materials to passively control the thermal behavior of a star tracker by infusing it with a fitting phase change material. Based on the numerical model of the star trackers thermal behavior using ESATAN-TMS without implemented phase change material, a fitting phase change material for selected orbits is chosen and implemented in the thermal model. The altered thermal behavior of the numerical model after the implementation is analyzed for different amounts of the chosen phase change materials using an ESATAN-based subroutine developed by the FH Aachen. The PCM-modelling-subroutine is explained in the paper ICES-2021-110. The results show that an increasing amount of phase change material increasingly damps temperature oscillations. Using an integral part structure some of the mass increase can be compensated. KW - passive thermal control KW - PCM KW - star tracker KW - Infused Thermal Solutions KW - GEO KW - LEO Y1 - 2021 N1 - 50th International Conference on Environmental Systems, 12-15 July 2021, held virtually PB - Texas Tech University CY - Lubbock, Tex. ER - TY - CHAP A1 - Wild, Dominik A1 - Czupalla, Markus A1 - Förstner, Roger T1 - Modeling, prediction and test of additive manufactured integral structures with embedded lattice and phase change material applying Infused Thermal Solutions (ITS) T2 - ICES104: Advances in Thermal Control Technology N2 - Infused Thermal Solutions (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, but with phase change material (PCM) for thermal energy storage (TES), in combination with lattice - both embedded in additive manufactured functional structures. In this ITS follow-on paper a thermal model approach and associated predictions are presented, related on the ITS functional breadboards developed at FH Aachen. Predictive TES by PCM is provided by a specially developed ITS PCM subroutine, which is applicable in ESATAN. The subroutine is based on the latent heat storage (LHS) method to numerically embed thermo-physical PCM behavior. Furthermore, a modeling approach is introduced to numerically consider the virtual PCM/lattice nodes within the macro-encapsulated PCM voids of the double wall ITS design. Related on these virtual nodes, in-plane and out-of-plane conductive links are defined. The recent additive manufactured ITS breadboard series are thermally cycled in the thermal vacuum chamber, both with and without embedded PCM. Related on breadboard hardware tests, measurement results are compared with predictions and are subsequently correlated. The results of specific simulations and measurements are presented. Recent predictive results of star tracker analyses are also presented in ICES-2021-106, based on this ITS PCM subroutine. KW - latent heat KW - thermo-physical KW - lattice KW - ESATAN KW - subroutine KW - PCM KW - ITS Y1 - 2021 N1 - 50th International Conference on Environmental Systems, 12-15 July 2021, held virtually PB - Texas Tech University CY - Lubbock, Tex. ER - TY - JOUR A1 - Schopen, Oliver A1 - Shah, Neel A1 - Esch, Thomas A1 - Shabani, Bahman T1 - Critical quantitative evaluation of integrated health management methods for fuel cell applications JF - International Journal of Hydrogen Energy N2 - Online fault diagnostics is a crucial consideration for fuel cell systems, particularly in mobile applications, to limit downtime and degradation, and to increase lifetime. Guided by a critical literature review, in this paper an overview of Health management systems classified in a scheme is presented, introducing commonly utilised methods to diagnose FCs in various applications. In this novel scheme, various Health management system methods are summarised and structured to provide an overview of existing systems including their associated tools. These systems are classified into four categories mainly focused on model-based and non-model-based systems. The individual methods are critically discussed when used individually or combined aimed at further understanding their functionality and suitability in different applications. Additionally, a tool is introduced to evaluate methods from each category based on the scheme presented. This tool applies the technique of matrix evaluation utilising several key parameters to identify the most appropriate methods for a given application. Based on this evaluation, the most suitable methods for each specific application are combined to build an integrated Health management system. KW - Fuel cell KW - Health management system KW - Online diagnostic KW - Fault detection KW - Non-model-based Evaluation Y1 - 2024 U6 - https://doi.org/10.1016/j.ijhydene.2024.05.156 SN - 0360-3199 VL - 70 SP - 370 EP - 388 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Czupalla, Markus T1 - Ein Garten im Weltraum JF - Spektrum der Wissenschaft Y1 - 2017 PB - Spektrum-der-Wiss.-Verl.-Ges. CY - Heidelberg ER - TY - GEN A1 - Eccleston, Paul A1 - Drummond, Rachel A1 - Middleton, Kevin A1 - Bishop, Georgia A1 - Caldwell, Andrew A1 - Desjonqueres, Lucile A1 - Tosh, Ian A1 - Cann, Nick A1 - Crook, Martin A1 - Hills, Matthew A1 - Pearson, Chris A1 - Simpson, Caroline A1 - Stamper, Richard A1 - Tinetti, Giovanna A1 - Pascale, Enzo A1 - Swain, Mark A1 - Holmes, Warren A. A1 - Wong, Andre A1 - Puig, Ludovic A1 - Pilbratt, Göran A1 - Linder, Martin A1 - Boudin, Nathalie A1 - Ertel, Hanno A1 - Gambicorti, Lisa A1 - Halain, Jean-Philippe A1 - Pace, Emanuele A1 - Vilardell, Francesc A1 - Gómez, José M. A1 - Colomé, Josep A1 - Amiaux, Jérôme A1 - Cara, Christophe A1 - Berthe, Michel A1 - Moreau, Vincent A1 - Morgante, Gianluca A1 - Malaguti, Giuseppe A1 - Alonso, Gustavo A1 - Álvarez, Javier P. A1 - Ollivier, Marc A1 - Philippon, Anne A1 - Hellin, Marie-Laure A1 - Roose, Steve A1 - Frericks, Martin A1 - Krijger, Matthijs A1 - Rataj, Miroslaw A1 - Wawer, Piotr A1 - Skup, Konrad A1 - Sobiecki, Mateusz A1 - Christian Jessen, Niels A1 - Møller Pedersen, Søren A1 - Hargrave, Peter A1 - Griffin, Matt A1 - Ottensamer, Roland A1 - Hunt, Thomas A1 - Rust, Duncan A1 - Saleh, Aymen A1 - Winter, Berend A1 - Focardi, Mauro A1 - Da Deppo, Vania A1 - Zuppella, Paola A1 - Czupalla, Markus ED - Lystrup, Makenzie ED - Perrin, Marshall D. ED - Batalha, Natalie ED - Siegler, Nicholas ED - Tong, Edward C. T1 - The ARIEL payload: A technical overview T2 - Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave N2 - The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next (M4) medium class space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of ~1000 known transiting exoplanets using its metre-class telescope. A three-band photometer and three spectrometers cover the 0.5 µm to 7.8 µm region of the electromagnetic spectrum. This paper gives an overview of the mission payload, including the telescope assembly, the FGS (Fine Guidance System) - which provides both pointing information to the spacecraft and scientific photometry and low-resolution spectrometer data, the ARIEL InfraRed Spectrometer (AIRS), and other payload infrastructure such as the warm electronics, structures and cryogenic cooling systems. KW - Exoplanet KW - Spectroscopy KW - Transit KW - Atmospheres KW - Payload Y1 - 2020 U6 - https://doi.org/10.1117/12.2561478 N1 - Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave, 14–22 December 2020, Online Only, United States VL - 11443 SP - 114430Z PB - SPIE CY - Washington ER - TY - GEN A1 - Reiswich, Martin A1 - Brandt, Hannes A1 - Czupalla, Markus T1 - Passive thermal control by integration of phase change material into additively manufactured structures T2 - E2. 47th Student conference N2 - Optical Instruments require an extremely stable thermal surrounding to prevent loss of data quality by misalignments of the instrument components resulting from material deformation due to temperature f luctuations (e.g. from solar intrusion). Phase Change Material (PCM) can be applied as a thermal damper to achieve a more uniform temperature distribution. The challenge of this method is, among others, the integration of PCM into affected areas. If correctly designed, incoming heat is latently absorbed during phase change of the PCM, i.e. the temperature of a structure remains almost constant. In a cold phase, the heat during phase change is released again latently until the PCM returns to its original state of aggregation. Thus, the structure is thermally stabilized. At FH Aachen– University of Applied Sciences research is conducted to apply PCM directly into the structures of affected components (baffles, optical benches, electronic boxes, etc.). Through the application of Additive Manufacturing, the necessary voids are directly printed into these structures and filled later with PCM. Additive Manufacturing enables complex structures that would not have been possible with conservative manufacturing methods. A corresponding Breadboard was developed and manufactured by Selective Laser Melting (SLM). The current state of research includes the handling and analysis of the Breadboard, tests and a correlation of the thermal model. The results have shown analytically and practically that it is possible to use PCM as an integral part of the structure as a thermal damper. The results serve as a basis for the further development of the technology, which should maximize performance and enable the integration of PCM into much more complex structures. Y1 - 2019 N1 - 70th International Astronautical Congress, 21. - 25. Oktober 2019, Washington D.C., United States ER - TY - GEN A1 - Gamgami, Farid A1 - Czupalla, Markus A1 - Garcia, Antonio A1 - Agnolon, David T1 - From planetary transits to spacecraft design: achieving PLATO’s pointing performance T2 - A7. Symposium on technological Requirement for future space astronomy and solar-system science missions N2 - In the last decades, several hundred exoplanets could be detected thanks to space-based observatories, namely CNES’ COROT and NASA’s Kepler. To expand this quest ESA plans to launch CHEOPS as the f irst small class mission in the cosmic visions program (S1) and PLATO as the 3rd medium class mission, so called M3 . PLATO’s primary objective is the detection of Earth like Exoplanets orbiting solar type stars in the habitable zone and characterisation of their bulk properties. This is possible by precise lightcurve measurement via 34 cameras. That said it becomes obvious that accurate pointing is key to achieve the required signal to noise ratio for positive transit detection. The paper will start with a comprehensive overview of PLATO’s mission objectives and mission architecture. Hereafter, special focus will be devoted to PLATO’s pointing requirements. Understanding the very nature of PLATO’s pointing requirements is essential to derive a design baseline to achieve the required performance. The PLATO frequency domain is of particular interest, ranging from 40 mHz to 3 Hz. Due to the very different time-scales involved, the spectral pointing requirement is decomposed into a high frequency part dominated by the attitude control system and the low frequency part dominated by the thermo-elastic properties of the spacecraft’s configuration. Both pose stringent constraints on the overall design as well as technology properties to comply with the derived requirements and thus assure a successful mission. Y1 - 2016 N1 - 67th International Astronautical Congress, 26. - 30. September 2016, Guadalajara, Mexico ER - TY - CHAP A1 - Bung, Daniel Bernhard A1 - Langohr, Phillip A1 - Waldenberger, Lisa ED - Habersack, Helmut ED - Tritthart, Michael T1 - Influence of cycle number in CFD studies of labyrinth weirs T2 - Proceedings of the 40th IAHR World Congress (Vienna, 2023) N2 - The major advantage of labyrinth weirs over linear weirs is hydraulic efficiency. In hydraulic modeling efforts, this strength contrasts with limited pump capacity as well as limited computational power for CFD simulations. For the latter, reducing the number of investigated cycles can significantly reduce necessary computational time. In this study, a labyrinth weir with different cycle numbers was investigated. The simulations were conducted in FLOW-3D HYDRO as a Large Eddy Simulation. With a mean deviation of 1.75 % between simulated discharge coefficients and literature design equations, a reasonable agreement was found. For downstream conditions, overall consistent results were observed as well. However, the orientation of labyrinth weirs with a single cycle should be chosen carefully under consideration of the individual research purpose. KW - CFD KW - Large Eddy Simulation KW - Labyfrinth weirs Y1 - 2023 SN - 978-90-833476-1-5 U6 - https://doi.org/10.3850/978-90-833476-1-5_iahr40wc-p0531-cd SN - L 2521-7119 (online) N1 - Vienna, Austria, from August 21 to 25, 2023 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - JOUR A1 - Droop, Philipp A1 - Chen, Shaohuang A1 - Radford, Melissa J. A1 - Paulßen, Elisabeth A1 - Gates, Byron D. A1 - Reilly, Raymond M. A1 - Radchenko, Valery A1 - Hoehr, Cornelia T1 - Synthesis of 197m/gHg labelled gold nanoparticles for targeted radionuclide therapy JF - Radiochimica Acta N2 - Meitner-Auger-electron emitters have a promising potential for targeted radionuclide therapy of cancer because of their short range and the high linear energy transfer of Meitner-Auger-electrons (MAE). One promising MAE candidate is 197m/gHg with its half-life of 23.8 h and 64.1 h, respectively, and high MAE yield. Gold nanoparticles (AuNPs) that are labelled with 197m/gHg could be a helpful tool for radiation treatment of glioblastoma multiforme when infused into the surgical cavity after resection to prevent recurrence. To produce such AuNPs, 197m/gHg was embedded into pristine AuNPs. Two different syntheses were tested starting from irradiated gold containing trace amounts of 197m/gHg. When sodium citrate was used as reducing agent, no 197m/gHg labelled AuNPs were formed, but with tannic acid, 197m/gHg labeled AuNPs were produced. The method was optimized by neutralizing the pH (pH = 7) of the Au/197m/gHg solution, which led to labelled AuNPs with a size of 12.3 ± 2.0 nm as measured by transmission electron microscopy. The labelled AuNPs had a concentration of 50 μg (gold)/mL with an activity of 151 ± 93 kBq/mL (197gHg, time corrected to the end of bombardment). KW - 197m/gHg KW - Gold nanoparticle (AuNP) KW - Meitner-Auger-electron (MAE) KW - Targeted radionuclide therapy (TRT) Y1 - 2023 U6 - https://doi.org/10.1515/ract-2023-0144 SN - 2193-3405 VL - 111 IS - 10 SP - 773 EP - 779 PB - De Gruyter CY - Berlin [u.a.] ER - TY - JOUR A1 - Mues genannt Koers, Lucas A1 - McNeil, S. W. A1 - Radchenko, V. A1 - Paulßen, Elisabeth A1 - Hoehr, Cornelia T1 - Production of Co-58m in a siphon-style liquid target on a medical cyclotron N2 - We present the production of 58mCo on a small, 13 MeV medical cyclotron utilizing a siphon style liquid target system. Different concentrated iron(III)-nitrate solutions of natural isotopic distribution were irradiated at varying initial pressures and subsequently separated by solid phase extraction chromatography. The radio cobalt (58m/gCo and 56Co) was successfully produced with saturation activities of (0.35 ± 0.03) MBq μA−1 for 58mCo with a separation recovery of (75 ± 2) % of cobalt after one separation step utilizing LN-resin. Y1 - 2023 U6 - https://doi.org/10.1016/j.apradiso.2023.110734 SN - 0969-8043 VL - 195 IS - Art. 110734 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Mues genannt Koers, Lucas A1 - Prevost, David A1 - Paulßen, Elisabeth A1 - Hoehr, Cornelia T1 - Density reduction effects on the production of [11C]CO2 in Nb-body targets on a medical cyclotron N2 - Medical isotope production of 11C is commonly performed in gaseous targets. The power deposition of the proton beam during the irradiation decreases the target density due to thermodynamic mixing and can cause an increase of penetration depth and divergence of the proton beam. In order to investigate the difference how the target-body length influences the operation conditions and the production yield, a 12 cm and a 22 cm Nb-target body containing N2/O2 gas were irradiated using a 13 MeV proton cyclotron. It was found that the density reduction has a large influence on the pressure rise during irradiation and the achievable radioactive yield. The saturation activity of [11C]CO2 for the long target (0.083 Ci/μA) is about 10% higher than in the short target geometry (0.075 Ci/μA). Y1 - 2023 U6 - https://doi.org/10.1016/j.apradiso.2023.110911 VL - 199 IS - Art. 110911 PB - Elsevier CY - Amsterdam ER -