TY - JOUR A1 - Poghossian, Arshak A1 - Karschuck, Tobias A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Field-Effect Capacitors Decorated with Ligand-Stabilized Gold Nanoparticles: Modeling and Experiments JF - Biosensors N2 - Nanoparticles are recognized as highly attractive tunable materials for designing field-effect biosensors with enhanced performance. In this work, we present a theoretical model for electrolyte-insulator-semiconductor capacitors (EISCAP) decorated with ligand-stabilized charged gold nanoparticles. The charged AuNPs are taken into account as additional, nanometer-sized local gates. The capacitance-voltage (C–V) curves and constant-capacitance (ConCap) signals of the AuNP-decorated EISCAPs have been simulated. The impact of the AuNP coverage on the shift of the C–V curves and the ConCap signals was also studied experimentally on Al–p-Si–SiO₂ EISCAPs decorated with positively charged aminooctanethiol-capped AuNPs. In addition, the surface of the EISCAPs, modified with AuNPs, was characterized by scanning electron microscopy for different immobilization times of the nanoparticles. KW - aminooctanethiol KW - nanoparticle coverage KW - capacitive model KW - gold nanoparticles KW - field-effect sensor KW - electrolyte-insulator-semiconductor capacitors Y1 - 2022 U6 - https://doi.org/10.3390/bios12050334 SN - 2079-6374 N1 - This article belongs to the Special Issue "Biosensors in Nanotechnology" VL - 12 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bronder, Thomas A1 - Wu, Chunsheng A1 - Poghossian, Arshak A1 - Werner, Frederik A1 - Keusgen, M. A1 - Schöning, Michael Josef T1 - Label-free detection of DNA hybridization with light-addressable potentiometric sensors: comparison of various DNA-immobilization strategies JF - Procedia Engineering N2 - Light-addressable potentiometric sensors (LAPS) consisting of a p-Si-SiO2 and p-Si-SiO2-Au structure, respectively, have been tested for a label-free electrical detection of DNA (deoxyribonucleic acid) hybridization. Three different strategies for immobilizing single-stranded probe DNA (ssDNA) molecules on a LAPS surface have been studied and compared: (a) immobilization of thiol-modified ssDNA on the patterned Au surface via gold-thiol bond, (b) covalent immobilization of amino-modified ssDNA onto the SiO2 surface functionalized with 3-aminopropyltriethoxysilane and (c) layer-by-layer adsorption of negatively charged ssDNA on a positively charged weak polyelectrolyte layer of poly(allylamine hydrochloride). KW - LAPS KW - lable-free detection KW - DNA hybridization KW - field-effect sensor Y1 - 2014 U6 - https://doi.org/10.1016/j.proeng.2014.11.647 SN - 1877-7058 N1 - EUROSENSORS 2014 ; European Conference on Solid-State Transducers <28, 2014> VL - 87 SP - 755 EP - 758 PB - Elsevier CY - Amsterdam ER -