TY - CHAP A1 - Staat, Manfred A1 - Heitzer, Michael T1 - The restricted influence of kinematic hardening on shakedown loads N2 - Structural design analyses are conducted with the aim of verifying the exclusion of ratcheting. To this end it is important to make a clear distinction between the shakedown range and the ratcheting range. In cyclic plasticity more sophisticated hardening models have been suggested in order to model the strain evolution observed in ratcheting experiments. The hardening models used in shakedown analysis are comparatively simple. It is shown that shakedown analysis can make quite stable predictions of admissible load ranges despite the simplicity of the underlying hardening models. A linear and a nonlinear kinematic hardening model of two-surface plasticity are compared in material shakedown analysis. Both give identical or similar shakedown ranges. Structural shakedown analyses show that the loading may have a more pronounced effect than the hardening model. KW - Biomedizinische Technik KW - Einspielen KW - Shakedown KW - Ratcheting KW - Bruchmechanik KW - shakedown KW - material shakedown KW - linear kinematic hardening KW - nonlinear kinematic hardening KW - ratchetting Y1 - 2002 ER - TY - CHAP A1 - Staat, Manfred A1 - Duong, Minh Tuan T1 - Smoothed Finite Element Methods for Nonlinear Solid Mechanics Problems: 2D and 3D Case Studies T2 - Proceedings of the National Science and Technology Conference on Mechanical - Transportation Engineering (NSCMET 2016), 13th October 2016, Hanoi, Vietnam, Vol.2 N2 - The Smoothed Finite Element Method (SFEM) is presented as an edge-based and a facebased techniques for 2D and 3D boundary value problems, respectively. SFEMs avoid shortcomings of the standard Finite Element Method (FEM) with lower order elements such as overly stiff behavior, poor stress solution, and locking effects. Based on the idea of averaging spatially the standard strain field of the FEM over so-called smoothing domains SFEM calculates the stiffness matrix for the same number of degrees of freedom (DOFs) as those of the FEM. However, the SFEMs significantly improve accuracy and convergence even for distorted meshes and/or nearly incompressible materials. Numerical results of the SFEMs for a cardiac tissue membrane (thin plate inflation) and an artery (tension of 3D tube) show clearly their advantageous properties in improving accuracy particularly for the distorted meshes and avoiding shear locking effects. Y1 - 2016 SP - 440 EP - 445 ER - TY - CHAP A1 - Staat, Manfred T1 - Limit and shakedown analysis under uncertainty T2 - Proceedings International Conference on Advances in Computational Mechanics (ACOME) Y1 - 2012 N1 - International Conference on Advances in Computational Mechanics (ACOME), August 14-16, 2012, Ho Chi Minh City, Vietnam SP - 837 EP - 861 ER - TY - CHAP A1 - Staat, Manfred T1 - Design by Analysis of Pressure Components by non-linear Optimization N2 - This paper presents the direct route to Design by Analysis (DBA) of the new European pressure vessel standard in the language of limit and shakedown analysis (LISA). This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for some examples from the DBA-Manual. One observation from the examples is, that the optimisation approach gives reliable and close lower bound solutions leading to simple and optimised design decision. KW - Analytischer Zulaessigkeitsnachweis KW - FEM KW - Einspiel-Analyse KW - design-by-analysis KW - finite element analysis KW - limit and shakedown analysis Y1 - 2003 ER - TY - CHAP A1 - Staat, Manfred T1 - Problems and chances for probabilistic fracture mechanics in the analysis of steel pressure boundary reliability. - Überarb. Ausg. N2 - In: Technical feasibility and reliability of passive safety systems for nuclear power plants. Proceedings of an Advisory Group Meeting held in Jülich, 21-24 November 1994. - Vienna , 1996. - Seite: 43 - 55 IAEA-TECDOC-920 Abstract: It is shown that the difficulty for probabilistic fracture mechanics (PFM) is the general problem of the high reliability of a small population. There is no way around the problem as yet. Therefore what PFM can contribute to the reliability of steel pressure boundaries is demon­strated with the example of a typical reactor pressure vessel and critically discussed. Although no method is distinguishable that could give exact failure probabilities, PFM has several addi­tional chances. Upper limits for failure probability may be obtained together with trends for design and operating conditions. Further, PFM can identify the most sensitive parameters, improved control of which would increase reliability. Thus PFM should play a vital role in the analysis of steel pressure boundaries despite all shortcomings. KW - Bruchmechanik KW - probabilistic fracture mechanics KW - PFM Y1 - 2006 ER - TY - CHAP A1 - Spurmann, Jörn A1 - Ohndorf, Andreas A1 - Dachwald, Bernd A1 - Seboldt, Wolfgang A1 - Löb, Horst A1 - Schartner, Karl-Heinz T1 - Interplanetary trajectory optimization for a sep mission to Saturn T2 - 60th International Astronautical Congress 2009 N2 - The recently proposed NASA and ESA missions to Saturn and Jupiter pose difficult tasks to mission designers because chemical propulsion scenarios are not capable of transferring heavy spacecraft into the outer solar system without the use of gravity assists. Thus our developed mission scenario based on the joint NASA/ESA Titan Saturn System Mission baselines solar electric propulsion to improve mission flexibility and transfer time. For the calculation of near-globally optimal low-thrust trajectories, we have used a method called Evolutionary Neurocontrol, which is implemented in the low-thrust trajectory optimization software InTrance. The studied solar electric propulsion scenario covers trajectory optimization of the interplanetary transfer including variations of the spacecraft's thrust level, the thrust unit's specific impulse and the solar power generator power level. Additionally developed software extensions enabled trajectory optimization with launcher-provided hyperbolic excess energy, a complex solar power generator model and a variable specific impulse ion engine model. For the investigated mission scenario, Evolutionary Neurocontrol yields good optimization results, which also hold valid for the more elaborate spacecraft models. Compared to Cassini/Huygens, the best found solutions have faster transfer times and a higher mission flexibility in general. KW - Spacecraft KW - Reusable Rocket Engines KW - Hybrid Propellants Y1 - 2009 SN - 9781615679089 N1 - 60th International Astronautical Congress 2009 (IAC 2009) Held 12-16 October 2009, Daejeon, Republic of Korea. SP - 5234 EP - 5248 ER - TY - CHAP A1 - Sherelkhan, Dinara A1 - Alibekova, Alina ED - Digel, Ilya ED - Staat, Manfred ED - Trzewik, Jürgen ED - Sielemann, Stefanie ED - Erni, Daniel ED - Zylka, Waldemar T1 - EEM spectroscopy characterization of humic substances of biomedical importance T2 - 4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen N2 - Humic substances possess distinctive chemical features enabling their use in many advanced applications, including biomedical fields. No chemicals in nature have the same combination of specific chemical and biological properties as humic substances. Traditional medicine and modern research have demonstrated that humic substances from different sources possess immunomodulatory and anti-inflammatory properties, which makes them suitable for the prevention and treatment of chronic dermatoses, allergic rhinitis, atopic dermatitis, and other conditions characterized by inflammatory and allergic responses [1-4]. The use of humic compounds as agentswith antifungal and antiviral properties shows great potential [5-7]. Y1 - 2024 SN - 978-3-940402-65-3 U6 - http://dx.doi.org/10.17185/duepublico/81475 SP - 31 EP - 32 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Seefeldt, Patric A1 - Bauer, Waldemar A1 - Dachwald, Bernd A1 - Grundmann, Jan Thimo A1 - Straubel, Marco A1 - Sznajder, Maciej A1 - Tóth, Norbert A1 - Zander, Martin E. T1 - Large lightweight deployable structures for planetary defence: solar sail propulsion, solar concentrator payloads, large-scale photovoltaic power T2 - 4th IAA Planetary Defense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy Y1 - 2015 N1 - IAA-PDC-15-P-20 ER - TY - CHAP A1 - Seboldt, Wolfgang A1 - Dachwald, Bernd T1 - Solar sails for near-term advanced scientific deep space missions T2 - Proceedings of the 8th International Workshop on Combustion and Propulsion N2 - Solar sails are propelled in space by reflecting solar photons off large mirroring surfaces, thereby transforming the momentum of the photons into a propulsive force. This innovative concept for low-thrust space propulsion works without any propellant and thus provides a wide range of opportunities for highenergy low-cost missions. Offering an efficient way of propulsion, solar sailcraft could close a gap in transportation options for highly demanding exploration missions within our solar system and even beyond. On December 17th, 1999, a significant step was made towards the realization of this technology: a lightweight solar sail structure with an area of 20 m × 20 m was successfully deployed on ground in a large facility at the German Aerospace Center (DLR) at Cologne. The deployment from a package of 60 cm × 60 cm × 65 cm with a total mass of less than 35 kg was achieved using four extremely light-weight carbon fiber reinforced plastics (CFRP) booms with a specific mass of 100 g/m. The paper briefly reviews the basic principles of solar sails as well as the technical concept and its realization in the ground demonstration experiment, performed in close cooperation between DLR and ESA. Next possible steps are outlined. They could comprise the in-orbit demonstration of the sail deployment on the upper stage of a low-cost rocket and the verification of the propulsion concept by an autonomous and free flying solar sail in the frame of a scientific mission. It is expected that the present design could be extended to sail sizes of about (40 m)2 up to even (70 m)2 without significant mass penalty. With these areas, the maximum achievable thrust at 1 AU would range between 10 and 40 mN – comparable to some electric thrusters. Such prototype sails with a mass between 50 and 150 kg plus a micro-spacecraft of 50 to 250 kg would have a maximum acceleration in the order of 0.1 mm/s2 at 1 AU, corresponding to a maximum ∆V-capability of about 3 km/s per year. Two near/medium-term mission examples to a near-Earth asteroid (NEA) will be discussed: a rendezvous mission and a sample return mission. KW - solar sail KW - low-thrust KW - near-Earth asteroid KW - sample return KW - solar system Y1 - 2003 N1 - Proceedings of the 8th International Workshop on Combustion and Propulsion. Pozzuoli, Italy, 16 - 21 June 2002. ER - TY - CHAP A1 - Seboldt, Wolfgang A1 - Blome, Hans-Joachim A1 - Dachwald, Bernd A1 - Richter, Lutz T1 - Proposal for an integrated European space exploration strategy T2 - 55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law N2 - Recently, in his vision for space exploration, US president Bush announced to extend human presence across the solar system, starting with a human return to the Moon as early as 2015 in preparation for human exploration of Mars and other destinations. In Europe, an exploration program, termed AURORA, was established by ESA in 2001 – funded on a voluntary basis by ESA member states – with a clear focus on Mars and the ultimate goal of landing humans on Mars around 2030 in international cooperation. In 2003, a Human Spaceflight Vision Group was appointed by ESA with the task to develop a vision for the role of human spaceflight during the next quarter of the century. The resulting vision focused on a European-led lunar exploration initiative as part of a multi-decade, international effort to strengthen European identity and economy. After a review of the situation in Europe concerning space exploration, the paper outlines an approach for a consistent positioning of exploration within the existing European space programs, identifies destinations, and develops corresponding scenarios for an integrated strategy, starting with robotic missions to the Moon, Mars, and near-Earth asteroids. The interests of the European planetary in-situ science community, which recently met at DLR Cologne, are considered. Potential robotic lunar missions comprise polar landings to search for frozen volatiles and a sample return. For Mars, the implementation of a modest robotic landing mission in 2009 to demonstrate the capability for landing and prepare more ambitious and complex missions is discussed. For near-Earth asteroid exploration, a low-cost in-situ technology demonstration mission could yield important results. All proposed scenarios offer excellent science and could therefore create synergies between ESA’s mandatory and optional programs in the area of planetary science and exploration. The paper intents to stimulate the European discussion on space exploration and reflects the personal view of the authors. Y1 - 2004 N1 - 55th International Astronautical Congress 2004 - Vancouver, Canada SP - 1 EP - 10 ER - TY - CHAP A1 - Schoutetens, Frederic A1 - Dachwald, Bernd A1 - Heiligers, Jeannette T1 - Optimisation of photon-sail trajectories in the alpha-centauri system using evolutionary neurocontrol T2 - 8th ICATT (International Conference on Astrodynamics Tools and Techniques) 23 - 25 June 2021, Virtual N2 - With the increased interest for interstellar exploration after the discovery of exoplanets and the proposal by Breakthrough Starshot, this paper investigates the optimisation of photon-sail trajectories in Alpha Centauri. The prime objective is to find the optimal steering strategy for a photonic sail to get captured around one of the stars after a minimum-time transfer from Earth. By extending the idea of the Breakthrough Starshot project with a deceleration phase upon arrival, the mission’s scientific yield will be increased. As a secondary objective, transfer trajectories between the stars and orbit-raising manoeuvres to explore the habitable zones of the stars are investigated. All trajectories are optimised for minimum time of flight using the trajectory optimisation software InTrance. Depending on the sail technology, interstellar travel times of 77.6-18,790 years can be achieved, which presents an average improvement of 30% with respect to previous work. Still, significant technological development is required to reach and be captured in the Alpha-Centauri system in less than a century. Therefore, a fly-through mission arguably remains the only option for a first exploratory mission to Alpha Centauri, but the enticing results obtained in this work provide perspective for future long-residence missions to our closest neighbouring star system. Y1 - 2021 N1 - 8th ICATT (International Conference on Astrodynamics Tools and Techniques) 23 - 25 June 2021, Virtual SP - 1 EP - 15 ER - TY - CHAP A1 - Schneider, Oliver A1 - Al Hakim, Taher A1 - Kayser, Peter A1 - Digel, Ilya ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Development and trials of a test chamber for ultrasound-assisted sampling of living cells from solid surfaces T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - http://dx.doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 96 EP - 97 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Schmitz, Annika A1 - Apandi, Shah Eiman Amzar Shah A1 - Spillner, Jan A1 - Hima, Flutura A1 - Behbahani, Mehdi ED - Digel, Ilya ED - Staat, Manfred ED - Trzewik, Jürgen ED - Sielemann, Stefanie ED - Erni, Daniel ED - Zylka, Waldemar T1 - Effect of different cannula positions in the pulmonary artery on blood flow and gas exchange using computational fluid dynamics analysis T2 - 4th YRA MedTech Symposium 2024 : February 1 / 2024 / FH Aachen N2 - Pulmonary arterial cannulation is a common and effective method for percutaneous mechanical circulatory support for concurrent right heart and respiratory failure [1]. However, limited data exists to what effect the positioning of the cannula has on the oxygen perfusion throughout the pulmonary artery (PA). This study aims to evaluate, using computational fluid dynamics (CFD), the effect of different cannula positions in the PA with respect to the oxygenation of the different branching vessels in order for an optimal cannula position to be determined. The four chosen different positions (see Fig. 1) of the cannulas are, in the lower part of the main pulmonary artery (MPA), in the MPA at the junction between the right pulmonary artery (RPA) and the left pulmonary artery (LPA), in the RPA at the first branch of the RPA and in the LPA at the first branch of the LPA. Y1 - 2024 SN - 978-3-940402-65-3 U6 - http://dx.doi.org/10.17185/duepublico/81475 SP - 29 EP - 30 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Schlemmer, Katharina A1 - Porst, Dariusz A1 - Bassam, Rasha A1 - Artmann, Gerhard A1 - Digel, Ilya ED - Erni, Daniel ED - Fischerauer, Alice ED - Himmel, Jörg ED - Seeger, Thomas ED - Thelen, Klaus T1 - Effects of nitric oxide (NO) and ATP on red blood cell phenotype and deformability T2 - 2nd YRA MedTech Symposium 2017 : June 8th - 9th / 2017 / Hochschule Ruhr-West Y1 - 2017 SN - 978-3-9814801-9-1 U6 - http://dx.doi.org/10.17185/duepublico/43984 N1 - A young researchers track of the 7th IEEE Workshop & SENSORICA 2017 SP - 100 EP - 101 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Schartner, Karl-Heinz A1 - Loeb, H. W. A1 - Dachwald, Bernd A1 - Ohndorf, Andreas T1 - Perspectives of electric propulsion for outer planetary and deep space missions T2 - European Planetary Science Congress 2009 N2 - Solar-electric propulsion (SEP) is superior with respect to payload capacity, flight time and flexible launch window to the conventional interplanetary transfer method using chemical propulsion combined with gravity assists. This fact results from the large exhaust velocities of electric low–thrust propulsion and is favourable also for missions to the giant planets, Kuiper-belt objects and even for a heliopause probe (IHP) as shown in three studies by the authors funded by DLR. They dealt with a lander for Europa and a sample return mission from a mainbelt asteroid [1], with the TANDEM mission [2]; the third recent one investigates electric propulsion for the transfer to the edge of the solar system. All studies are based on triple-junction solar arrays, on rf-ion thrusters of the qualified RIT-22 type and they use the intelligent trajectory optimization program InTrance [3]. Y1 - 2009 N1 - European Planetary Science Congress 2009, 13-18 September, Potsdam, Germany SP - 416 EP - 416 ER - TY - CHAP A1 - Savitskaya, Irina S. A1 - Kistaubayeva, Aida S. A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Zhubanova, Azhar A. T1 - Performance of Bio-Composite Carbonized Materials in Probiotic Applications T2 - World Academy of Science, Engineering and Technology International Journal of Biotechnology and Bioengineering Y1 - 2013 VL - 7 IS - 7 SP - 685 EP - 689 ER - TY - CHAP A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, T. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices T2 - 23rd Annual Congress of the European College of Sport Science, Dublin, Irland Y1 - 2018 ER - TY - CHAP A1 - Raman, Aravind Hariharan A1 - Jung, Alexander A1 - Horváth, András A1 - Becker, Nadine A1 - Staat, Manfred ED - Staat, Manfred ED - Erni, Daniel T1 - Modification of a computer model of human stem cell-derived cardiomyocyte electrophysiology based on Patch-Clamp measurements T2 - 3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH Aachen N2 - Human induced pluripotent stem cells (hiPSCs) have shown to be promising in disease studies and drug screenings [1]. Cardiomyocytes derived from hiPSCs have been extensively investigated using patch-clamping and optical methods to compare their electromechanical behaviour relative to fully matured adult cells. Mathematical models can be used for translating findings on hiPSCCMs to adult cells [2] or to better understand the mechanisms of various ion channels when a drug is applied [3,4]. Paci et al. (2013) [3] developed the first model of hiPSC-CMs, which they later refined based on new data [3]. The model is based on iCells® (Fujifilm Cellular Dynamics, Inc. (FCDI), Madison WI, USA) but major differences among several cell lines and even within a single cell line have been found and motivate an approach for creating sample-specific models. We have developed an optimisation algorithm that parameterises the conductances (in S/F=Siemens/Farad) of the latest Paci et al. model (2018) [5] using current-voltage data obtained in individual patch-clamp experiments derived from an automated patch clamp system (Patchliner, Nanion Technologies GmbH, Munich). Y1 - 2019 SN - 978-3-940402-22-6 U6 - http://dx.doi.org/10.17185/duepublico/48750 SP - 10 EP - 11 PB - Universität Duisburg-Essen CY - Duisburg ER - TY - CHAP A1 - Pohle-Fröhlich, Regina A1 - Dalitz, Christoph A1 - Richter, Charlotte A1 - Hahnen, Tobias A1 - Stäudle, Benjamin A1 - Albracht, Kirsten T1 - Estimation of muscle fascicle orientation in ultrasonic images T2 - VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 5 Y1 - 2020 SP - 79 EP - 86 ER - TY - CHAP A1 - Pirovano, Laura A1 - Seefeldt, Patric A1 - Dachwald, Bernd A1 - Noomen, Ron T1 - Attitude and Orbital Dynamics Modeling for an Uncontrolled Solar-Sail Experiment in Low-Earth Orbit T2 - 25th International Symposium on Spaceflight Dynamics, 2015, Munich, Germany Y1 - 2015 ER -