TY - CHAP A1 - Altherr, Lena A1 - Dörig, Bastian A1 - Ederer, Thorsten A1 - Pelz, Peter Franz A1 - Pfetsch, Marc A1 - Wolf, Jan T1 - A mixed-integer nonlinear program for the design of gearboxes T2 - Operations Research Proceedings 2016 N2 - Gearboxes are mechanical transmission systems that provide speed and torque conversions from a rotating power source. Being a central element of the drive train, they are relevant for the efficiency and durability of motor vehicles. In this work, we present a new approach for gearbox design: Modeling the design problem as a mixed-integer nonlinear program (MINLP) allows us to create gearbox designs from scratch for arbitrary requirements and—given enough time—to compute provably globally optimal designs for a given objective. We show how different degrees of freedom influence the runtime and present an exemplary solution. Y1 - 2017 SN - 978-3-319-55701-4 U6 - https://doi.org/10.1007/978-3-319-55702-1_31 SP - 227 EP - 233 PB - Springer CY - Cham ER - TY - CHAP A1 - Altherr, Lena A1 - Ederer, Thorsten A1 - Schänzle, Christian A1 - Lorenz, Ulf A1 - Pelz, Peter F. T1 - Algorithmic system design using scaling and affinity laws T2 - Operations Research Proceedings 2015 N2 - Energy-efficient components do not automatically lead to energy-efficient systems. Technical Operations Research (TOR) shifts the focus from the single component to the system as a whole and finds its optimal topology and operating strategy simultaneously. In previous works, we provided a preselected construction kit of suitable components for the algorithm. This approach may give rise to a combinatorial explosion if the preselection cannot be cut down to a reasonable number by human intuition. To reduce the number of discrete decisions, we integrate laws derived from similarity theory into the optimization model. Since the physical characteristics of a production series are similar, it can be described by affinity and scaling laws. Making use of these laws, our construction kit can be modeled more efficiently: Instead of a preselection of components, it now encompasses whole model ranges. This allows us to significantly increase the number of possible set-ups in our model. In this paper, we present how to embed this new formulation into a mixed-integer program and assess the run time via benchmarks. We present our approach on the example of a ventilation system design problem. KW - Optimal Topology KW - Piecewise Linearization KW - Ventilation System KW - Similarity Theory Y1 - 2017 SN - 978-3-319-42901-4 SN - 978-3-319-42902-1 U6 - https://doi.org/10.1007/978-3-319-42902-1 N1 - International Conference of the German, Austrian and Swiss Operations Research Societies (GOR, ÖGOR, SVOR/ASRO), University of Vienna, Austria, September 1-4, 2015 SP - 605 EP - 611 PB - Springer CY - Cham ER - TY - CHAP A1 - Altherr, Lena A1 - Pelz, Peter F. A1 - Ederer, Thorsten A1 - Pfetsch, Marc E. ED - Jacobs, Georg T1 - Optimale Getriebe auf Knopfdruck: Gemischt-ganzzahlige nichtlineare Optimierung zur Entscheidungsunterstützung bei der Auslegung von Getrieben für Kraftfahrzeuge T2 - Antriebstechnisches Kolloquium ATK 2017 Y1 - 2017 SN - 9783743148970 N1 - Antriebstechnisches Kolloquium ATK 2017, 07.03-08.03.2017. Aachen, Deutschland SP - 313 EP - 325 ER - TY - RPRT A1 - Digel, Ilya A1 - Kayser, Peter T1 - VirEx - Eliminierung von Quarantäne relevanten Viroiden aus Kulturpflanzen Abschlussbericht des Projektes KMU-innovativ-12: Teilprojekt 3 Y1 - 2017 U6 - https://doi.org/10.2314/GBV:1012136345 N1 - Druck-Ausgabe: Schlussbericht für das BMBF-Forschungsvorhaben "VirEx - Eliminierung von Quarantäne relevanten Viroiden aus Kulturpflanzen" Förderkennzeichen BMBF 031A400C PB - Institut für Bioengineering (IfB) der FH Aachen CY - Aachen ER - TY - JOUR A1 - Ayed, Anis Haj A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Keinz, Jan A1 - Bohn, D. T1 - CFD based exploration of the dry-low-NOx hydrogen micromix combustion technology at increased energy densities JF - Propulsion and Power Research KW - Micromix combustion KW - Hydrogen gas turbine KW - Hydrogen combustion KW - High hydrogen combustion KW - Dry-low-NOx (DLN) combustion Y1 - 2017 SN - 2212-540X U6 - https://doi.org/10.1016/j.jppr.2017.01.005 VL - 6 IS - 1 SP - 15 EP - 24 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Ayed, Anis Haj A1 - Striegan, Constantin J. D. A1 - Kusterer, Karsten A1 - Funke, Harald A1 - Kazari, M. A1 - Horikawa, Atsushi A1 - Okada, Kunio T1 - Automated design space exploration of the hydrogen fueled "Micromix" combustor technology N2 - Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested “DLN Micromix” combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field. Y1 - 2017 N1 - Proceedings of the 1st Global Power and Propulsion Forum GPPF 2017, Jan 16-18, 2017, Zurich, Switzerland SP - 1 EP - 8 ER - TY - CHAP A1 - Kubalski, T. A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Klinkel, S. T1 - Investigation Of The Seismic Behaviour Of Infill Masonry Using Numerical Modelling Approaches T2 - 16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 N2 - Masonry is a widely spread construction type which is used all over the world for different types of structures. Due to its simple and cheap construction, it is used as non-structural as well as structural element. In frame structures, such as reinforced concrete frames, masonry may be used as infill. While the bare frame itself is able to carry the loads when it comes to seismic events, the infilled frame is not able to warp freely due to the constrained movement. This restraint results in a complex interaction between the infill and the surrounding frame, which may lead to severe damage to the infill as well as the surrounding frame. The interaction is studied in different projects and effective approaches for the description of the behavior are still lacking. Experimental programs are usually quite expensive, while numerical models, once validated, do offer an efficient approach for the investigation of the interaction when horizontally loaded. In order to study the numerous parameters influencing the seismic load bearing behavior, numerical models may be used. Therefore, this contribution presents a numerical approach for the simulation of infill masonry in reinforced concrete frames. Both parts, the surrounding frame as well as the infill are represented by micro modelling approaches to correctly take into account the different types of failure. The adopted numerical model describes the inelastic behavior of the system, as indicated by the obtained results of the overall structural response as well as the formation of damage in the infilled wall. Comparison of the numerical and experimental results highlights the valuable contribution of numerical simulations in the study and design of infilled frames. As damage of the infill masonry may occur in-plane due to the interaction as well as out-of-plane due to the low vertical load, both directions of loading are investigated. Y1 - 2017 N1 - Paper No 3064 SP - 1 EP - 11 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - CHAP A1 - Rosin, J. A1 - Mykoniou, K. A1 - Butenweg, Christoph T1 - Analysis Of Base Isolated Liquid Storage Tanks With 3D Fsi-Analysis As Well As Simplified Approaches T2 - 16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 N2 - Tanks are preferably designed, for cost-saving reasons, as circular, cylindrical, thin-walled shells. In case of seismic excitation, these constructions are highly vulnerable to stability failures. An earthquake-resistant design of rigidly supported tanks for high seismic loading demands, however, uneconomic wall thicknesses. A cost-effective alternative can be provided by base isolation systems. In this paper, a simplified seismic design procedure for base isolated tanks is introduced, by appropriately modifying the standard mechanical model for flexible, rigidly supported tanks. The non-linear behavior of conventional base isolation systems becomes an integral part of a proposed simplified process, which enables the assessment of the reduced hydrodynamic forces acting on the tank walls and the corresponding stress distribution. The impulsive and convective actions of the liquid are taken into account. The validity of this approach is evaluated by employing a non-linear fluid-structure interaction algorithm of finite element method. Special focus is placed on the boundary conditions imposed from the base isolation and the resulting hydrodynamic pressures. Both horizontal and vertical component of ground motion are considered in order to study the principal effects of the base isolation on the pressure distribution of the tank walls. The induced rocking effects associated with elastomeric bearings are discussed. The results manifest that base isolated tanks can be designed for seismic loads by means of the proposed procedure with sufficient accuracy, allowing to dispense with numerically expensive techniques. KW - liquid storage tank KW - seismic isolation KW - elastomeric bearing KW - friction pendulum bearing KW - simplified approach Y1 - 2017 N1 - Paper No 2246 SP - 1 EP - 14 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - CHAP A1 - Rajan, S. A1 - Butenweg, Christoph A1 - Dalguer, L. A. A1 - An, J. H. A1 - Renault, P. A1 - Klinkel, S. T1 - Fragility curves for a three-storey reinforced concrete test structure of the international benchmark SMART 2013 T2 - 16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 Y1 - 2017 N1 - Paper No 2119 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - JOUR A1 - Butenweg, Christoph T1 - Die neue Erdbebenfibel. Neue Hilfsmittel für die Leichtbetonindustrie JF - Tagungsband 61. Ulmer Beton Tage 2017 Y1 - 2017 ER - TY - JOUR A1 - Butenweg, Christoph A1 - Rosin, Julia A1 - Holler, Stefan T1 - Analysis of cylindrical granular material silos under seismic excitation JF - Buildings N2 - Silos generally work as storage structures between supply and demand for various goods, and their structural safety has long been of interest to the civil engineering profession. This is especially true for dynamically loaded silos, e.g., in case of seismic excitation. Particularly thin-walled cylindrical silos are highly vulnerable to seismic induced pressures, which can cause critical buckling phenomena of the silo shell. The analysis of silos can be carried out in two different ways. In the first, the seismic loading is modeled through statically equivalent loads acting on the shell. Alternatively, a time history analysis might be carried out, in which nonlinear phenomena due to the filling as well as the interaction between the shell and the granular material are taken into account. The paper presents a comparison of these approaches. The model used for the nonlinear time history analysis considers the granular material by means of the intergranular strain approach for hypoplasticity theory. The interaction effects between the granular material and the shell is represented by contact elements. Additionally, soil–structure interaction effects are taken into account. KW - granular silo KW - earthquake engineering KW - hypoplasticity KW - nonlinear transient analyses Y1 - 2017 U6 - https://doi.org/10.3390/buildings7030061 SN - 2075-5309 VL - 7 IS - 3 SP - 1 EP - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Klein, Michel A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - The Influence of Soil-Structure-Interaction on the Fatigue Analysis in the Foundation Design of Onshore Wind Turbines JF - Procedia Engineering Y1 - 2017 U6 - https://doi.org/10.1016/j.proeng.2017.09.325 SN - 1877-7058 VL - 199 SP - 3218 EP - 3223 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Butenweg, Christoph T1 - Passt, wackelt und hat Luft: Mauerwerksbauten aus Leichtbeton in Erdbebengebieten T2 - Beton-Bauteile, 65. Ausgabe (2017): Entwerfen - Planen - Ausführen Y1 - 2017 SN - 978-3-7625-3676-5 N1 - gedruckt in der Bereichsbibliothek Bayernallee unter der Signatur 11 XCF 81-2017 vorhanden SP - 136 EP - 140 PB - Bauverl. CY - Gütersloh ER - TY - BOOK A1 - Labisch, Susanna A1 - Wählisch, Georg T1 - Technisches Zeichnen: Eigenständig lernen und effektiv üben Y1 - 2017 SN - 978-3-658-18312-7 U6 - https://doi.org/10.1007/978-3-658-18313-4 N1 - gedruckt in der Bereichsbibliothek Jülich vorhanden; auch als elektronische Ressource PB - Springer Vieweg CY - Wiesbaden ET - 5. überarbeitete Auflage ER - TY - JOUR A1 - Müller, Wolfram A1 - Jung, Alexander A1 - Ahammer, Helmut T1 - Advantages and problems of nonlinear methods applied to analyze physiological time signals: human balance control as an example JF - Scientific Reports Y1 - 2017 SN - 2045-2322 U6 - https://doi.org/10.1038/s41598-017-02665-5 VL - 7 IS - Article number 2464 SP - 1 EP - 11 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Mayer, Jan A1 - Hentschke, Reinhard A1 - Hager, Jonathan A1 - Hojdis, Nils A1 - Karimi-Varnaneh, Hossein Ali T1 - A Nano-Mechanical Instability as Primary Contribution to Rolling Resistance JF - Scientific Reports Y1 - 2017 SN - 2045-2322 VL - 7 IS - Article number 11275 PB - Springer CY - Berlin ER - TY - JOUR A1 - Meyer, Jan A1 - Hentschke, Reinhard A1 - Hager, Jonathan A1 - Hojdis, Nils A1 - Karimi-Varzaneh, Hossein Ali T1 - Molecular Simulation of Viscous Dissipation due to Cyclic Deformation of a Silica–Silica Contact in Filled Rubber JF - Macromolecules Y1 - 2017 U6 - https://doi.org/10.1021/acs.macromol.7b00947 SN - 1520-5835 VL - 50 IS - 17 SP - 6679 EP - 6689 ER - TY - JOUR A1 - Weber, Tobias A1 - Arent, Jan-Christoph A1 - Steffen, Lucas A1 - Balvers, Johannes M. A1 - Duhovic, Miro T1 - Thermal optimization of composite autoclave molds using the shift factor approach for boundary condition estimation JF - Journal of Composite Materials Y1 - 2017 U6 - https://doi.org/10.1177/0021998317699868 SN - 1530-793X VL - 51 IS - 12 SP - 1753 EP - 1767 PB - Sage CY - London ER - TY - JOUR A1 - Weber, Tobias A1 - Ruff-Stahl, Hans-Joachim K. T1 - Advances in Composite Manufacturing of Helicopter Parts JF - International Journal of Aviation, Aeronautics, and Aerospace Y1 - 2017 U6 - https://doi.org/10.15394/ijaaa.2017.1153 SN - 2374-6793 VL - 4 IS - 1 ER - TY - CHAP A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - A comparison of complex chemistry mechanisms for hydrogen methane blends based on the Sandia / Sydney Bluff-Body Flame HM1 T2 - Proceedings of the Eleventh Asia‐Pacific Conference on Combustion (ASPACC 2017), New South Wales, Australia, 10-14 December 2017 Y1 - 2017 SN - 978-1-5108-5646-2 SP - 262 EP - 265 ER -