TY - CHAP A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - Social responsibility and innovation - Key competencies for engineers T2 - ICERI 2016: 9th International Conference of Education, Research and Innovation: Conference Proceedings : Seville (Spain), 14-16 November N2 - Engineers are of particular importance for the societies of tomorrow. The big social challenges society has to cope with in future, can only be mastered, if engineers link the development and innovation process closely with the requirements of people. As a result, in the frame of the innovation process engineers have to design and develop products for diverse users. Therefore, the consideration of diversity in this process is a core competence engineers should have. Implementing the consideration of diverse requirements into product design is also linked to the development of sustainable products and thus leads to social responsible research and development, the core concept formulated by the EU. For this reason, future engineers should be educated to look at the technical perspectives of a problem embedded in the related questions within societies they are developing their artefacts for. As a result, the aim of teaching engineering should be to prepare engineers for these requirements and to draw attention to the diverse needs in a globalized world. To match the competence profiles of future engineers to the global challenges and the resulting social responsibility, RWTH Aachen University, one of the leading technical universities in Germany, has established the bridging professorship “Gender and Diversity in Engineering” (GDI) which educates engineers with an interdisciplinary approach to expand engineering limits. The interdisciplinary teaching concept of the research group pursues an approach which imparts an application oriented Gender and Diversity expertise to future engineers. In the frame of an established teaching concept, which is a result of experiences and expertise of the research group, students gain theoretical knowledge about Gender and Diversity and learn how to transfer their knowledge into their later field of action. In the frame of the conference the institutional approach will be presented as well as the teaching concept which will be introduced by concrete course examples. KW - diversity KW - innovation KW - social responsible engineering KW - engineering education Y1 - 2016 SN - 978-84-617-5895-1 U6 - https://doi.org/10.21125/iceri.2016.0353 SN - 2340-1095 SP - 5967 EP - 5976 ER - TY - CHAP A1 - Leicht-Scholten, Carmen A1 - Steuer-Dankert, Linda A1 - Bouffier, Anna T1 - Facing Future Challenges: Building Engineers for Tomorrow T2 - Conference proceedings : new perspectives in science education : 5th Conference edition, Florence, Italy, 17-18 March 2016 N2 - Future engineers are increasingly confronted with the so-called Megatrends which are the big social challenges society has to cope with. These Megatrends, such as “Silver Society”, “Globalization”, “Mobility” and “Female Shift” require an application-oriented perspective on Diversity especially in the engineering field. Therefore, it is necessary to enable future engineers not only to look at the technical perspectives of a problem, but also to be able to see the related questions within societies they are developing their artefacts for. The aim of teaching engineering should be to prepare engineers for these requirements and to draw attention to the diverse needs in a globalized world. Bringing together technical knowledge and social competences which go beyond a mere training of the so-called “soft skills”, is a new approach followed at RWTH Aachen University, one of the leading technical universities in Germany. RWTH Aachen University has established the bridging professorship “Gender and Diversity in Engineering” (GDI) which educates engineers with an interdisciplinary approach to expand engineering limits. In the frame of a sustainable teaching concept the research group under the leadership of Prof. Carmen Leicht-Scholten has developed an approach which imparts a supplication-specific Gender and Diversity expertise to engineers. In workshops students gain theoretical knowledge about Gender and Diversity and learn how to transfer their knowledge in their special field of study and later work. To substantiate this, the course participants have to solve case studies from real life. The cases which are developed in collaboration with non-profit organizations and enterprises from economy rise the students to challenges which are inspired by professional life. Evaluation shows the success of this approach as well as an increasing demand for such teaching formats. KW - Diversity KW - Engineering Education KW - Gender KW - Higher Education Y1 - 2016 SN - 978-886292-705-5 SP - 32 EP - 37 ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Berg, Tobias A1 - Leicht-Scholten, Carmen T1 - Breaking the habit – new approaches in engineering education T2 - Proceedings of the 43rd Annual Conference of the European Society for Engineering Education N2 - Within the framework of the project a genderand diversity-oriented teaching evaluation and modern, media-supported blended learning approaches were used in order to achieve the intended goals. First research results of the literature and status quo analysis were already implemented and tested in newly designed teaching approaches, for example in a multidisciplinary introductory lecture of civil engineering at RWTH Aachen University. KW - teaching KW - engineering education KW - gender and diversity KW - best practice Y1 - 2015 SN - 978-2-87352-012-0 N1 - Annual Conference of the European Society for Engineering Education , Orléans , France , SEFI , 2015-06-29 - 2015-07-02 ER - TY - CHAP A1 - Handschuh, Nils A1 - Stollenwerk, Dominik A1 - Borchert, Jörg T1 - Operation of thermal storage power plants under high renewable grid penetration T2 - NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems N2 - The planned coal phase-out in Germany by 2038 will lead to the dismantling of power plants with a total capacity of approx. 30 GW. A possible further use of these assets is the conversion of the power plants to thermal storage power plants; the use of these power plants on the day-ahead market is considerably limited by their technical parameters. In this paper, the influence of the technical boundary conditions on the operating times of these storage facilities is presented. For this purpose, the storage power plants were described as an MILP problem and two price curves, one from 2015 with a relatively low renewable penetration (33 %) and one from 2020 with a high renewable energy penetration (51 %) are compared. The operating times were examined as a function of the technical parameters and the critical influencing factors were investigated. The thermal storage power plant operation duration and the energy shifted with the price curve of 2020 increases by more than 25 % compared to 2015. KW - storage optimisation KW - storage dispatch KW - thermal storage Y1 - 2021 SN - 978-3-8007-5651-3 N1 - NEIS 2021: Conference on Sustainable Energy Supply and Energy Storage Systems. 13-14 September 2021. Hamburg, Germany SP - 261 EP - 265 PB - VDE Verlag CY - Berlin ER - TY - CHAP A1 - Kern, Alexander A1 - Imani Vashiani, Anahita A1 - Timmermanns, Tobias T1 - Threat for human beings due to touch voltages and body currents caused by direct lightning strikes in case of non-isolated lightning protection systems using natural components T2 - 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA) N2 - For typical cases of non-isolated lightning protection systems (LPS) the impulse currents are investigated which may flow through a human body directly touching a structural part of the LPS. Based on a basic LPS model with conventional down-conductors especially the cases of external and internal steel columns and metal façades are considered and compared. Numerical simulations of the line quantities voltages and currents in the time domain are performed with an equivalent circuit of the entire LPS. As a result it can be stated that by increasing the number of conventional down-conductors and external steel columns the threat for a human being can indeed be reduced, but not down to an acceptable limit. In case of internal steel columns used as natural down-conductors the threat can be reduced sufficiently, depending on the low-resistive connection of the steel columns to the lightning equipotential bonding or the earth termination system, resp. If a metal façade is used the threat for human beings touching is usually very low, if the façade is sufficiently interconnected and multiply connected to the lightning equipotential bonding or the earth termination system, resp. KW - Lightning protection system KW - down-conductor KW - steel columns KW - metal façade KW - touch voltage Y1 - 2021 SN - 978-1-6654-2346-5 U6 - https://doi.org/10.1109/ICLPandSIPDA54065.2021.9627465 N1 - 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), 20-26 Sept. 2021, Colombo, Sri Lanka PB - IEEE CY - New York, NY ER - TY - CHAP A1 - El Moussaoui, Noureddine A1 - Kassmi, Khalil A1 - Alexopoulos, Spiros A1 - Schwarzer, Klemens A1 - Chayeb, Hamid A1 - Bachiri, Najib T1 - Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy T2 - Materialstoday: Proceedings N2 - In this paper, we present the structure, the simulation the operation of a multi-stage, hybrid solar desalination system (MSDH), powered by thermal and photovoltaic (PV) (MSDH) energy. The MSDH system consists of a lower basin, eight horizontal stages, a field of four flat thermal collectors with a total area of 8.4 m2, 3 Kw PV panels and solar batteries. During the day the system is heated by thermal energy, and at night by heating resistors, powered by solar batteries. These batteries are charged by the photovoltaic panels during the day. More specifically, during the day and at night, we analyse the temperature of the stages and the production of distilled water according to the solar irradiation intensity and the electric heating power, supplied by the solar batteries. The simulations were carried out in the meteorological conditions of the winter month (February 2020), presenting intensities of irradiance and ambient temperature reaching 824 W/m2 and 23 °C respectively. The results obtained show that during the day the system is heated by the thermal collectors, the temperature of the stages and the quantity of water produced reach 80 °C and 30 Kg respectively. At night, from 6p.m. the system is heated by the electric energy stored in the batteries, the temperature of the stages and the quantity of water produced reach respectively 90 °C and 104 Kg for an electric heating power of 2 Kw. Moreover, when the electric power varies from 1 Kw to 3 Kw the quantity of water produced varies from 92 Kg to 134 Kg. The analysis of these results and their comparison with conventional solar thermal desalination systems shows a clear improvement both in the heating of the stages, by 10%, and in the quantity of water produced by a factor of 3. Y1 - 2021 U6 - https://doi.org/10.1016/j.matpr.2021.03.115 SN - 2214-7853 N1 - The Fourth edition of the International Conference on Materials & Environmental Science (ICMES 2020), virtual conference, November 18-28, 2020, Morocco VL - 45 IS - 8 SP - 7653 EP - 7660 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Dümmler, Andreas A1 - Oetringer, Kerstin A1 - Göttsche, Joachim T1 - Auslegungstool zur energieeffizienten Kühlung von Gebäuden T2 - DKV-Tagung 2020, AA IV N2 - Thematisch widmet sich das Projekt Coolplan- AIR der Fortentwicklung und Feldvalidierung eines Berechnungs- und Auslegungstools zur energieeffizienten Kühlung von Gebäuden mit luftgestützten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Der Schwerpunkt des Projekts liegt auf der Vermessung, Simulation und Integration rein luftgestützter Kühltechnologien. Im Bereich der Kälteerzeugung wurden Luft‐ Luft‐ Wärmepumpen, Anlagen zur adiabaten Kühlung bzw. offene Kühltürme und VRF‐ Multisplit‐ Systeme (Variable Refrigerant Flow) im Feld bzw. auf dem Teststand der HSD vermessen. Die Komponentenmodelle werden in die Matlab/Simulink‐ Toolbox CARNOT integriert und anschließend auf Basis der zuvor erhaltenen Messdaten validiert. Einerseits erlauben die Messungen das Betriebsverhalten von Anlagenkomponenten zu analysieren. Andererseits soll mit der Vermessung im Feld geprüft werden, inwieweit die Simulationsmodelle, welche im Vorgängerprojekt aus Prüfstandmessungen entwickelt wurden, auch für größere Geräteleistungen Gültigkeit besitzen. Die entwickelten und implementierten Systeme, bestehend aus verschiedensten Anlagenmodellen und Regelungskomponenten, werden geprüft und dahingehend qualifiziert, dass sie in Standard- Auslegungstools zuverlässig verwendet werden können. Zusätzlich wird ein energetisches Monitoring eines Hörsaalgebäudes am Campus Jülich durchgeführt, das u. a. zur Validierung der Kühllastberechnungen in gängigen Simulationsmodelle genutzt werden kann. Y1 - 2020 N1 - Deutsche Kälte- und Klimatagung, 19-20 November 2020, online SP - 1109 ER - TY - CHAP A1 - Oetringer, Kerstin A1 - Dümmler, Andreas A1 - Göttsche, Joachim T1 - Neues Modell zur 1D-Simulation der indirekten Verdunstungskühlung T2 - DKV‐Tagung 2020, AA II.1 N2 - Im Projekt Coolplan‐ AIR geht es um die Fortentwicklung und Feld‐ Validierung eines Berechnungs‐ und Auslegungstools zur energieeffizienten Kühlung von Gebäuden mit luftgestützten Systemen. Neben dem Aufbau und der Weiterentwicklung von Simulationsmodellen erfolgen Vermessungen der Gesamtsysteme anhand von Praxisanlagen im Feld. Eine der betrachteten Anlagen arbeitet mit indirekter Verdunstung. Diese Veröffentlichung zeigt den Entwicklungsprozess und den Aufbau des Simulationsmodells zur Verdunstungskühlung in der Simulationsumgebung Matlab‐ Simulink mit der CARNOT‐ Toolbox. Das besondere Augenmerk liegt dabei auf dem physikalischen Modell des Wärmeübertragers, in dem die Verdunstung implementiert ist. Dem neuen Modellansatz liegt die Annahme einer aus der Enthalpie‐ Betrachtung hergeleiteten effektiven Wärmekapazität zugrunde. Des Weiteren wird der Befeuchtungsgrad als konstant angesehen und eine standardisierte Zunahme der Wärmeübertragung des feuchten gegenüber dem trockenen Wärmeübertrager angenommen. Die Validierung des Modells erfolgte anhand von Literaturdaten. Für den trockenen Wärmetauscher ist der maximale absolute Fehler der berechneten Austrittstemperatur (Zuluft) kleiner als ±0.1 K und für den nassen Wärmetauscher (Kühlfall) unter der Annahme eines konstanten Verdunstungsgrades kleiner als ±0.4 K. Y1 - 2020 N1 - Deutsche Kälte- und Klimatagung, 19-20 November 2020, online SP - 250 EP - 262 ER - TY - CHAP A1 - Mistler, M. A1 - Butenweg, Christoph A1 - Anthoine, A. T1 - Evaluation of the failure criterion for masonry by homogenisation T2 - Proceedings of the Seventh International Conference on Computational Structures Technology : [Lisbon, Portugal, 7 - 9 September 2004] / ed. by B. H. V. Topping and C.A. Mota Soares Y1 - 2004 SN - 0-948749-95-4 U6 - https://doi.org/10.4203/ccp.79.201 PB - Civil-Comp Press CY - Stirling ER - TY - CHAP A1 - Rendon, Carlos A1 - Schwager, Christian A1 - Ghiasi, Mona A1 - Schmitz, Pascal A1 - Bohang, Fakhri A1 - Chico Caminos, Ricardo Alexander A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming T2 - AIP Conference Proceedings N2 - A 16.77 kW thermal power bayonet-tube reactor for the mixed reforming of methane using solar energy has been designed and modeled. A test bench for the experimental tests has been installed at the Synlight facility in Juelich, Germany and has just been commissioned. This paper presents the solar-heated reactor design for a combined steam and dry reforming as well as a scaled-up process simulation of a solar reforming plant for methanol production. Solar power towers are capable of providing large amounts of heat to drive high-endothermic reactions, and their integration with thermochemical processes shows a promising future. In the designed bayonet-tube reactor, the conventional burner arrangement for the combustion of natural gas has been substituted by a continuous 930 °C hot air stream, provided by means of a solar heated air receiver, a ceramic thermal storage and an auxiliary firing system. Inside the solar-heated reactor, the heat is transferred by means of convective mechanism mainly; instead of radiation mechanism as typically prevailing in fossil-based industrial reforming processes. A scaled-up solar reforming plant of 50.5 MWth was designed and simulated in Dymola® and AspenPlus®. In comparison to a fossil-based industrial reforming process of the same thermal capacity, a solar reforming plant with thermal storage promises a reduction up to 57 % of annual natural gas consumption in regions with annual DNI-value of 2349 kWh/m2. The benchmark solar reforming plant contributes to a CO2 avoidance of approx. 79 kilotons per year. This facility can produce a nominal output of 734.4 t of synthesis gas and out of this 530 t of methanol a day. Y1 - 2020 U6 - https://doi.org/10.1063/5.0029974 N1 - SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, 1–4 October 2019, Daegu, South Korea IS - 2303 SP - 170012-1 EP - 170012-9 ER - TY - CHAP A1 - Sattler, Johannes Christoph A1 - Chico Caminos, Ricardo Alexander A1 - Ürlings, Nicolas A1 - Dutta, Siddharth A1 - Ruiz, Victor A1 - Kalogirou, Soteris A1 - Ktistis, Panayiotis A1 - Agathokleous, Rafaela A1 - Jung, Christian A1 - Alexopoulos, Spiros A1 - Atti, Vikrama Nagababu A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Operational experience and behaviour of a parabolic trough collector system with concrete thermal energy storage for process steam generation in Cyprus T2 - AIP Conference Proceedings N2 - As part of the transnational research project EDITOR, a parabolic trough collector system (PTC) with concrete thermal energy storage (C-TES) was installed and commissioned in Limassol, Cyprus. The system is located on the premises of the beverage manufacturer KEAN Soft Drinks Ltd. and its function is to supply process steam for the factory's pasteurisation process [1]. Depending on the factory's seasonally varying capacity for beverage production, the solar system delivers between 5 and 25 % of the total steam demand. In combination with the C-TES, the solar plant can supply process steam on demand before sunrise or after sunset. Furthermore, the C-TES compensates the PTC during the day in fluctuating weather conditions. The parabolic trough collector as well as the control and oil handling unit is designed and manufactured by Protarget AG, Germany. The C-TES is designed and produced by CADE Soluciones de Ingeniería, S.L., Spain. In the focus of this paper is the description of the operational experience with the PTC, C-TES and boiler during the commissioning and operation phase. Additionally, innovative optimisation measures are presented. Y1 - 2020 U6 - https://doi.org/10.1063/5.0029278 N1 - SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, 1–4 October 2019, Daegu, South Korea IS - 2303 SP - 140004-1 EP - 140004-10 ER - TY - CHAP A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Innovative System for Earthquake Resistant Masonry Infill Walls T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11479 SP - 1 EP - 12 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Marinkovic, Marko A1 - Fehling, Ekkehard A1 - Pfetzing, Thomas A1 - Kubalski, Thomas T1 - Experimental and Numerical Investigations of Reinforced Concrete Frames with Masonry Infills under Combined In- and Out-of-plane Seismic Loading T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11477 SP - 1 EP - 12 ER - TY - CHAP A1 - Michel, Philipp A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Frequency Dependent Impedance Analysis of the Foundation-Soil-Systems of Onshore Wind Turbines T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 11440 SP - 1 EP - 13 ER - TY - CHAP A1 - Schmitt, Timo A1 - Rosin, Julia A1 - Butenweg, Christoph T1 - Seismic Impact And Design Of Buried Pipelines T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 N2 - Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety but also for the maintenance of the supply infrastructure after an earthquake. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. However, the presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, backfill height and synthetic displacement time histories. The interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs and the propagating wave is simulated affecting the pipeline punctually, independently in time and space. Special attention is given to long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which during the earthquake lead to high bending stresses in the cross-section of the pipeline. Finally, an interpretation of the results and recommendations are given for the most critical parameters. Y1 - 2018 N1 - Paper No 10600 SP - 1 EP - 12 ER - TY - CHAP A1 - Milkova, Kristina A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Dumova-Jovanoska, Elena T1 - Development of Seismic Vulnerability Curves for Region Specific Masonry Buildings T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10522 SP - 1 EP - 10 ER - TY - CHAP A1 - Anic, Filip A1 - Penava, Davorin A1 - Guljas, Ivica A1 - Sarhosis, Vasilis A1 - Abrahamczyk, Lars A1 - Butenweg, Christoph T1 - The Effect of Openings on Out-of-Plane Capacity of Masonry Infilled Reinforced Concrete Frames T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 N1 - Paper No 10168 SP - 1 EP - 11 ER - TY - CHAP A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Boesen, Niklas A1 - Gellert, Christoph T1 - Evaluation of the Seismic Behavior of a Modern URM Building During the 2012 Northern Italy Earthquakes T2 - 16th European Conference on Earthquake Engineering, Thessaloniki, 18-21 June, 2018 Y1 - 2018 SP - 1 EP - 12 ER - TY - CHAP A1 - Kubalski, T. A1 - Butenweg, Christoph A1 - Marinković, Marko A1 - Klinkel, S. T1 - Investigation Of The Seismic Behaviour Of Infill Masonry Using Numerical Modelling Approaches T2 - 16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 N2 - Masonry is a widely spread construction type which is used all over the world for different types of structures. Due to its simple and cheap construction, it is used as non-structural as well as structural element. In frame structures, such as reinforced concrete frames, masonry may be used as infill. While the bare frame itself is able to carry the loads when it comes to seismic events, the infilled frame is not able to warp freely due to the constrained movement. This restraint results in a complex interaction between the infill and the surrounding frame, which may lead to severe damage to the infill as well as the surrounding frame. The interaction is studied in different projects and effective approaches for the description of the behavior are still lacking. Experimental programs are usually quite expensive, while numerical models, once validated, do offer an efficient approach for the investigation of the interaction when horizontally loaded. In order to study the numerous parameters influencing the seismic load bearing behavior, numerical models may be used. Therefore, this contribution presents a numerical approach for the simulation of infill masonry in reinforced concrete frames. Both parts, the surrounding frame as well as the infill are represented by micro modelling approaches to correctly take into account the different types of failure. The adopted numerical model describes the inelastic behavior of the system, as indicated by the obtained results of the overall structural response as well as the formation of damage in the infilled wall. Comparison of the numerical and experimental results highlights the valuable contribution of numerical simulations in the study and design of infilled frames. As damage of the infill masonry may occur in-plane due to the interaction as well as out-of-plane due to the low vertical load, both directions of loading are investigated. Y1 - 2017 N1 - Paper No 3064 SP - 1 EP - 11 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER - TY - CHAP A1 - Rosin, J. A1 - Mykoniou, K. A1 - Butenweg, Christoph T1 - Analysis Of Base Isolated Liquid Storage Tanks With 3D Fsi-Analysis As Well As Simplified Approaches T2 - 16th World Conference on Earthquake Engineering, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 N2 - Tanks are preferably designed, for cost-saving reasons, as circular, cylindrical, thin-walled shells. In case of seismic excitation, these constructions are highly vulnerable to stability failures. An earthquake-resistant design of rigidly supported tanks for high seismic loading demands, however, uneconomic wall thicknesses. A cost-effective alternative can be provided by base isolation systems. In this paper, a simplified seismic design procedure for base isolated tanks is introduced, by appropriately modifying the standard mechanical model for flexible, rigidly supported tanks. The non-linear behavior of conventional base isolation systems becomes an integral part of a proposed simplified process, which enables the assessment of the reduced hydrodynamic forces acting on the tank walls and the corresponding stress distribution. The impulsive and convective actions of the liquid are taken into account. The validity of this approach is evaluated by employing a non-linear fluid-structure interaction algorithm of finite element method. Special focus is placed on the boundary conditions imposed from the base isolation and the resulting hydrodynamic pressures. Both horizontal and vertical component of ground motion are considered in order to study the principal effects of the base isolation on the pressure distribution of the tank walls. The induced rocking effects associated with elastomeric bearings are discussed. The results manifest that base isolated tanks can be designed for seismic loads by means of the proposed procedure with sufficient accuracy, allowing to dispense with numerically expensive techniques. KW - liquid storage tank KW - seismic isolation KW - elastomeric bearing KW - friction pendulum bearing KW - simplified approach Y1 - 2017 N1 - Paper No 2246 SP - 1 EP - 14 PB - Chilean Association on Seismology and Earthquake Engineering (ACHISINA) ER -