TY - JOUR A1 - Scheer, Nico A1 - Ross, Jillian A1 - Kapelyukh, Yury A1 - Rode, Anja A1 - Wolf, C. Roland T1 - In vivo responses of the human and murine pregnane X receptor to dexamethasone in mice JF - Drug Metabolism and Disposition N2 - Dexamethasone (DEX) is a potent and widely used anti-inflammatory and immunosuppressant glucocorticoid. It can bind and activate the pregnane X receptor (PXR), which plays a critical role as xenobiotic sensor in mammals to induce the expression of many enzymes, including cytochromes P450 in the CYP3A family. This induction results in its own metabolism. We have used a series of transgenic mouse lines, including a novel, improved humanized PXR line, to compare the induction profile of PXR-regulated drug-metabolizing enzymes after DEX administration, as well as looking at hepatic responses to rifampicin (RIF). The new humanized PXR model has uncovered further intriguing differences between the human and mouse receptors in that RIF only induced Cyp2b10 in the new humanized model. DEX was found to be a much more potent inducer of Cyp3a proteins in wild-type mice than in mice humanized for PXR. To assess whether PXR is involved in the detoxification of DEX in the liver, we analyzed the consequences of high doses of the glucocorticoid on hepatotoxicity on different PXR genetic backgrounds. We also studied these effects in an additional mouse model in which functional mouse Cyp3a genes have been deleted. These strains exhibited different sensitivities to DEX, indicating a protective role of the PXR and CYP3A proteins against the hepatotoxicity of this compound. Y1 - 2010 U6 - https://doi.org/10.1124/dmd.109.031872 SN - 1521-009X VL - 38 IS - 7 SP - 1046 EP - 1053 PB - ASPET CY - Bethesda ER - TY - JOUR A1 - Ross, Jillian A1 - Plummer, Simon M. A1 - Rode, Anja A1 - Scheer, Nico A1 - Bower, Conrad C. A1 - Vogel, Ortwin A1 - Henderson, Colin J. A1 - Wolf, C. Roland A1 - Elcombe, Clifford R. T1 - Human constitutive androstane receptor (CAR) and pregnane X receptor (PXR) support the hypertrophic but not the hyperplastic response to the murine nongenotoxic hepatocarcinogens phenobarbital and chlordane in vivo JF - Toxicological Sciences N2 - Mouse nongenotoxic hepatocarcinogens phenobarbital (PB) and chlordane induce hepatomegaly characterized by hypertrophy and hyperplasia. Increased cell proliferation is implicated in the mechanism of tumor induction. The relevance of these tumors to human health is unclear. The xenoreceptors, constitutive androstane receptors (CARs), and pregnane X receptor (PXR) play key roles in these processes. Novel “humanized” and knockout models for both receptors were developed to investigate potential species differences in hepatomegaly. The effects of PB (80 mg/kg/4 days) and chlordane (10 mg/kg/4 days) were investigated in double humanized PXR and CAR (huPXR/huCAR), double knockout PXR and CAR (PXRKO/CARKO), and wild-type (WT) C57BL/6J mice. In WT mice, both compounds caused increased liver weight, hepatocellular hypertrophy, and cell proliferation. Both compounds caused alterations to a number of cell cycle genes consistent with induction of cell proliferation in WT mice. However, these gene expression changes did not occur in PXRKO/CARKO or huPXR/huCAR mice. Liver hypertrophy without hyperplasia was demonstrated in the huPXR/huCAR animals in response to both compounds. Induction of the CAR and PXR target genes, Cyp2b10 and Cyp3a11, was observed in both WT and huPXR/huCAR mouse lines following treatment with PB or chlordane. In the PXRKO/CARKO mice, neither liver growth nor induction of Cyp2b10 and Cyp3a11 was seen following PB or chlordane treatment, indicating that these effects are CAR/PXR dependent. These data suggest that the human receptors are able to support the chemically induced hypertrophic responses but not the hyperplastic (cell proliferation) responses. At this time, we cannot be certain that hCAR and hPXR when expressed in the mouse can function exactly as the genes do when they are expressed in human cells. However, all parameters investigated to date suggest that much of their functionality is maintained. Y1 - 2010 U6 - https://doi.org/10.1093/toxsci/kfq118 SN - 1096-0929 VL - 116 IS - 2 SP - 452 EP - 466 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Scheer, Nico A1 - Kapelyukh, Yury A1 - Rode, Anja A1 - Buechel, Sandra A1 - Wolf, C. Roland T1 - Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines JF - Molecular Pharmacology N2 - Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction. Y1 - 2012 U6 - https://doi.org/10.1124/mol.112.080036 SN - 1521-0111 VL - 82 IS - 6 SP - 1022 EP - 1029 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Scheer, Nico A1 - Balimane, Praveen A1 - Hayward, Michael D. A1 - Buechel, Sandra A1 - Kauselmann, Gunther A1 - Wolf, C. Roland T1 - Generation and Characterization of a Novel Multidrug Resistance Protein 2 Humanized Mouse Line JF - Drug Metabolism and Disposition N2 - The multidrug resistance protein (MRP) 2 is predominantly expressed in liver, intestine, and kidney, where it plays an important role in the excretion of a range of drugs and their metabolites or endogenous compounds into bile, feces, and urine. Mrp knockout [Mrp2(−/−)] mice have been used recently to study the role of MRP2 in drug disposition. Here, we describe the first generation and initial characterization of a mouse line humanized for MRP2 (huMRP2), which is nulled for the mouse Mrp2 gene and expresses the human transporter in the organs and cell types where MRP2 is normally expressed. Analysis of the mRNA expression for selected cytochrome P450 and transporter genes revealed no major changes in huMRP2 mice compared with wild-type controls. We show that human MRP2 is able to compensate functionally for the loss of the mouse transporter as demonstrated by comparable bilirubin levels in the humanized mice and wild-type controls, in contrast to the hyperbilirubinemia phenotype that is observed in MRP2(−/−) mice. The huMRP2 mouse provides a model to study the role of the human transporter in drug disposition and in assessing the in vivo consequences of inhibiting this transporter by compounds interacting with human MRP2. Y1 - 2012 U6 - https://doi.org/10.1124/dmd.112.047605 SN - 1521-0111 VL - 40 IS - 11 SP - 2212 EP - 2218 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Scheer, Nico A1 - Mclaughlin, Lesley A. A1 - Rode, Anja A1 - MacLeod, Alastair Kenneth A1 - Henderson, Colin J. A1 - Wolf, Roland C. T1 - Deletion of thirty murine cytochrome P450 genes results in viable mice with compromised drug metabolism JF - Drug Metabolism and Disposition N2 - In humans, 75% of all drugs are metabolized by the cytochrome P450-dependent monooxygenase system. Enzymes encoded by the CYP2C, CYP2D, and CYP3A gene clusters account for ∼80% of this activity. There are profound species differences in the multiplicity of cytochrome P450 enzymes, and the use of mouse models to predict pathways of drug metabolism is further complicated by overlapping substrate specificity between enzymes from different gene families. To establish the role of the hepatic and extrahepatic P450 system in drug and foreign chemical disposition, drug efficacy, and toxicity, we created a unique mouse model in which 30 cytochrome P450 genes from the Cyp2c, Cyp2d, and Cyp3a gene clusters have been deleted. Remarkably, despite a wide range of putative important endogenous functions, Cyp2c/2d/3a KO mice were viable and fertile, demonstrating that these genes have evolved primarily as detoxification enzymes. Although there was no overt phenotype, detailed examination showed Cyp2c/2d/3a KO mice had a smaller body size (15%) and larger livers (20%). Changes in hepatic morphology and a decreased blood glucose (30%) were also noted. A five-drug cocktail of cytochrome P450 isozyme probe substrates were used to evaluate changes in drug pharmacokinetics; marked changes were observed in either the pharmacokinetics or metabolites formed from Cyp2c, Cyp2d, and Cyp3a substrates, whereas the metabolism of the Cyp1a substrate caffeine was unchanged. Thus, Cyp2c/2d/3a KO mice provide a powerful model to study the in vivo role of the P450 system in drug metabolism and efficacy, as well as in chemical toxicity. Y1 - 2014 U6 - https://doi.org/10.1124/dmd.114.057885 SN - 1521-009X VL - 42 IS - 6 SP - 1022 EP - 1030 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Vögele, Stefan A1 - Rübbelke, Dirk A1 - Govorukha, Kristina A1 - Grajewski, Matthias T1 - Socio-technical scenarios for energy-intensive industries: the future of steel production in Germany JF - Climatic Change Y1 - 2019 U6 - https://doi.org/10.1007/s10584-019-02366-0 SN - 0165-0009 SP - 1 EP - 16 PB - Springer CY - Berlin ER - TY - JOUR A1 - Campen, R. A1 - Kowalski, Julia A1 - Lyons, W.B. A1 - Tulaczyk, S. A1 - Dachwald, Bernd A1 - Pettit, E. A1 - Welch, K. A. A1 - Mikucki, J.A. T1 - Microbial diversity of an Antarctic subglacial community and high‐resolution replicate sampling inform hydrological connectivity in a polar desert JF - Environmental Microbiology Y1 - 2019 U6 - https://doi.org/10.1111/1462-2920.14607 SN - 1462-2920 IS - accepted article PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Lyons, W. Berry A1 - Mikucki, Jill A. A1 - German, Laura A. A1 - Welch, Kathleen A. A1 - Welch, Susan A. A1 - Gardener, Christopher B. A1 - Tulaczyk, Slawek M. A1 - Pettit, Erin C. A1 - Kowalski, Julia A1 - Dachwald, Bernd T1 - The Geochemistry of Englacial Brine from Taylor Glacier, Antarctica JF - Journal of Geophysical Research: Biogeosciences Y1 - 2019 U6 - https://doi.org/10.1029/2018JG004411 SN - 2169-8961 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Funke, Harald A1 - Beckmann, Nils A1 - Abanteriba, Sylvester T1 - An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications JF - International Journal of Hydrogen Energy Y1 - 2019 U6 - https://doi.org/10.1016/j.ijhydene.2019.01.161 SN - 0360-3199 VL - 44 IS - 13 SP - 6978 EP - 6990 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Breuer, Lars A1 - Pilas, Johanna A1 - Guthmann, Eric A1 - Schöning, Michael Josef A1 - Thoelen, Ronald A1 - Wagner, Torsten T1 - Towards light-addressable flow control: responsive hydrogels with incorporated graphene oxide as laser-driven actuator structures within microfluidic channels JF - Sensor and Actuators B: Chemical Y1 - 2019 U6 - https://doi.org/10.1016/j.snb.2019.02.086 SN - 0925-4005 VL - 288 SP - 579 EP - 585 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jung, Alexander A1 - Müller, Wolfram A1 - Staat, Manfred T1 - Optimization of the flight technique in ski jumping: the influence of wind Y1 - 2019 U6 - https://doi.org/10.1016/j.jbiomech.2019.03.023 IS - Early view PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Klubert, Joachim A1 - Malecha, Hartmut A1 - Sparla, Peter T1 - Modernisierung der geodätischen Messtechnik der Urfttalsperre JF - Wasserwirtschaft T2 - Modernisation of the geodetic measurement technology of the Urft dam Y1 - 2018 SN - 0043-0978 N1 - gedruckt in der Bereichsbibliothek Bayernallee vorhanden VL - 108 IS - 10 SP - 14 EP - 18 PB - Springer Vieweg CY - Wiesbaden ER - TY - JOUR A1 - Scheer, Nico A1 - Henderson, Colin James A1 - Kapelyukh, Yury A1 - Rode, Anja A1 - Mclaren, Aileen W. A1 - MacLeod, Alastair Kenneth A1 - Lin, De A1 - Wright, Jayne A1 - Stanley, Lesley A1 - Wolf, C. Roland T1 - An extensively humanised mouse model to predict pathways of drug disposition, drug/drug interactions, and to facilitate the design of clinical trials JF - Drug Metabolism and Disposition Y1 - 2019 U6 - https://doi.org/10.1124/dmd.119.086397 IS - Early view ER - TY - JOUR A1 - Jan Thimo, Grundmann A1 - Bauer, Waldemar A1 - Biele, Jens A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian D. A1 - Hercik, David T1 - Capabilities of Gossamer-1 derived small spacecraft solar sails carrying Mascot-derived nanolanders for in-situ surveying of NEAs JF - Acta Astronautica Y1 - 2019 U6 - https://doi.org/10.1016/j.actaastro.2018.03.019 SN - 0094-5765 VL - 156 IS - 3 SP - 330 EP - 362 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Salpati, Laurent A1 - Chu, Xiaoyan A1 - Chen, Liangfu A1 - Prasad, Bhagwat A1 - Dallas, Shannon A1 - Evers, Raymond A1 - Mamaril-Fishman, Donna A1 - Geier, Ethan G. A1 - Kehler, Jonathan A1 - Kunta, Jeevan A1 - Mezler, Mario A1 - Laplanche, Loic A1 - Pang, Jodie A1 - Soars, Matthew G. A1 - Unadkat, Jashvant D. A1 - van Waterschoot, Robert A.B. A1 - Yabut, Jocelyn A1 - Schinkel, Alfred H. A1 - Scheer, Nico A1 - Rode, Anja T1 - Evaluation of organic anion transporting polypeptide 1B1 and 1B3 humanized mice as a translational model to study the pharmacokinetics of statins JF - Drug Metabolism and Disposition N2 - Organic anion transporting polypeptide (Oatp) 1a/1b knockout and OATP1B1 and -1B3 humanized mouse models are promising tools for studying the roles of these transporters in drug disposition. Detailed characterization of these models will help to better understand their utility for predicting clinical outcomes. To advance this approach, we carried out a comprehensive analysis of these mouse lines by evaluating the compensatory changes in mRNA expression, quantifying the amounts of OATP1B1 and -1B3 protein by liquid chromatography–tandem mass spectrometry, and studying the active uptake in isolated hepatocytes and the pharmacokinetics of some prototypical substrates including statins. Major outcomes from these studies were 1) mostly moderate compensatory changes in only a few genes involved in drug metabolism and disposition, 2) a robust hepatic expression of OATP1B1 and -1B3 proteins in the respective humanized mouse models, and 3) functional activities of the human transporters in hepatocytes isolated from the humanized models with several substrates tested in vitro and with pravastatin in vivo. However, the expression of OATP1B1 and -1B3 in the humanized models did not significantly alter liver or plasma concentrations of rosuvastatin and pitavastatin compared with Oatp1a/1b knockout controls under the conditions used in our studies. Hence, although the humanized OATP1B1 and -1B3 mice showed in vitro and/or in vivo functional activity with some statins, further characterization of these models is required to define their potential use and limitations in the prediction of drug disposition and drug-drug interactions in humans. Y1 - 2014 U6 - https://doi.org/10.1124/dmd.114.057976 SN - 1521-009X VL - 42 IS - 8 SP - 1301 EP - 1313 PB - ASPET CY - Bethesda, Md. ER - TY - JOUR A1 - Luisier, Raphaëlle A1 - Lempiäinen, Harri A1 - Scherbichler, Nina A1 - Braeuning, Albert A1 - Geissler, Miriam A1 - Dubost, Valerie A1 - Müller, Arne A1 - Scheer, Nico A1 - Chibout, Salah-Dine A1 - Hara, Hisanori A1 - Picard, Frank A1 - Theil, Diethilde A1 - Couttet, Philippe A1 - Vitobello, Antonio A1 - Grenet, Olivier A1 - Grasl-Kraupp, Bettina A1 - Ellinger-Ziegelbauer, Heidrung A1 - Thomson, John P. A1 - Meehan, Richard R. A1 - Elcombe, Clifford R. A1 - Henderson, Colin J. A1 - Wolf, C. Roland A1 - Schwarz, Michael A1 - Moulin, Pierre A1 - Terranova, Remi A1 - Moggs, Jonathan G. T1 - Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse Liver Humanized for Constitutive Androstane and Pregnane X Receptors JF - Toxicological Sciences N2 - The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CARᴷᴼ-PXRᴷᴼ), double humanized CAR and PXR (CARʰ-PXRʰ), and wild-type C57BL/6 mice. Wild-type and CARʰ-PXRʰ mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CARᴷᴼ-PXRᴷᴼ mouse livers and largely reversible in wild-type and CARʰ-PXRʰ mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CARʰ-PXRʰ mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB. Y1 - 2014 U6 - https://doi.org/https://doi.org/10.1093/toxsci/kfu038 SN - 1094-2025 VL - 139 IS - 2 SP - 501 EP - 511 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Henderson, Colin J. A1 - Mclaughlin, Lesley A. A1 - Scheer, Nico A1 - Stanley, Lesley A. A1 - Wolf, C. Roland T1 - Cytochrome b5 Is a Major Determinant of Human Cytochrome P450 CYP2D6 and CYP3A4 Activity In Vivo s JF - Molecular Pharmacology Y1 - 2015 U6 - https://doi.org/10.1124/mol.114.097394 SN - 1521-0111 VL - 87 IS - 4 SP - 733 EP - 739 PB - ASPET CY - Bethesda ER - TY - JOUR A1 - Hough, Lindsay B. A1 - Nalwalk, Julia W. A1 - Ding, Xinxin A1 - Scheer, Nico T1 - Opioid Analgesia in P450 Gene Cluster Knockout Mice: A Search for Analgesia-Relevant Isoforms JF - Drug Metabolism and Disposition Y1 - 2015 U6 - https://doi.org/10.1124/dmd.115.065490 SN - 1521-009x VL - 43 IS - 9 SP - 1326 EP - 1330 ER - TY - JOUR A1 - Scheer, Nico A1 - Kapelyukh, Yury A1 - Rode, Anja A1 - Oswald, Stefan A1 - Busch, Diana A1 - Mclaughlin, Lesley A. A1 - Lin, De A1 - Henderson, Colin J. A1 - Wolf, C. Roland T1 - Defining Human Pathways of Drug Metabolism In Vivo through the Development of a Multiple Humanized Mouse Model JF - Drug Metabolism and Disposition Y1 - 2015 U6 - https://doi.org/10.1124/dmd.115.065656 SN - 1521-009x VL - 43 IS - 11 SP - 1679 EP - 1690 PB - ASPET CY - Bethesda ER - TY - JOUR A1 - Dallas, Shannon A1 - Salphati, Laurent A1 - Gomez-Zepeda, David A1 - Wanek, Thomas A1 - Chen, Liangfu A1 - Chu, Xiaoyan A1 - Kunta, Jeevan A1 - Mezler, Mario A1 - Menet, Marie-Claude A1 - Chasseigneaux, Stephanie A1 - Declèves, Xavier A1 - Langer, Oliver A1 - Pierre, Esaie A1 - DiLoreto, Karen A1 - Hoft, Carolin A1 - Laplanche, Loic A1 - Pang, Jodie A1 - Pereira, Tony A1 - Andonian, Clara A1 - Simic, Damir A1 - Rode, Anja A1 - Yabut, Jocelyn A1 - Zhang, Xiaolin A1 - Scheer, Nico T1 - Generation and Characterization of a Breast Cancer Resistance Protein Humanized Mouse Model JF - Molecular Pharmacology N2 - Breast cancer resistance protein (BCRP) is expressed in various tissues, such as the gut, liver, kidney and blood brain barrier (BBB), where it mediates the unidirectional transport of substrates to the apical/luminal side of polarized cells. Thereby BCRP acts as an efflux pump, mediating the elimination or restricting the entry of endogenous compounds or xenobiotics into tissues and it plays important roles in drug disposition, efficacy and safety. Bcrp knockout mice (Bcrp−/−) have been used widely to study the role of this transporter in limiting intestinal absorption and brain penetration of substrate compounds. Here we describe the first generation and characterization of a mouse line humanized for BCRP (hBCRP), in which the mouse coding sequence from the start to stop codon was replaced with the corresponding human genomic region, such that the human transporter is expressed under control of the murine Bcrp promoter. We demonstrate robust human and loss of mouse BCRP/Bcrp mRNA and protein expression in the hBCRP mice and the absence of major compensatory changes in the expression of other genes involved in drug metabolism and disposition. Pharmacokinetic and brain distribution studies with several BCRP probe substrates confirmed the functional activity of the human transporter in these mice. Furthermore, we provide practical examples for the use of hBCRP mice to study drug-drug interactions (DDIs). The hBCRP mouse is a promising model to study the in vivo role of human BCRP in limiting absorption and BBB penetration of substrate compounds and to investigate clinically relevant DDIs involving BCRP. Y1 - 2016 U6 - https://doi.org/10.1124/mol.115.102079 SN - 1521-0111 VL - 89 IS - 5 SP - 492 EP - 504 PB - ASPET CY - Bethesda, Md. ER -