TY - JOUR A1 - Poghossian, Arshak A1 - Thust, M. A1 - Schöning, Michael Josef A1 - Müller-Veggian, Mattea A1 - Kordos, P. A1 - Lüth, H. T1 - Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier JF - Sensors and Actuators B. 68 (2000), H. 1-3 Y1 - 2000 SN - 0925-4005 SP - 260 EP - 265 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Thust, M. A1 - Schroth, P. A1 - Steffen, A. A1 - Lüth, H. A1 - Schöning, Michael Josef T1 - Penicillin detection by means of silicon-based field-effect structures JF - Sensors and Materials. 13 (2001), H. 4 Y1 - 2001 SN - 0392-2510 SP - 207 EP - 223 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Schroth, P. A1 - Simonis, A. A1 - Lüth, H. T1 - An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime JF - Sensors and Actuators B. 76 (2001), H. 1-3 Y1 - 2001 SN - 0925-4005 SP - 519 EP - 526 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Detecting Both Physical and (Bio-)Chemical Parameters by Means of ISFET Devices JF - Electroanalysis. 16 (2004), H. 22 Y1 - 2004 SN - 1040-0397 SP - 1863 EP - 1872 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - "High-order” hybrid FET module for (bio)chemical and physical sensing JF - Integrated analytical systems / ed. by Salvador Alegret Y1 - 2003 SN - 0-444-51037-0 SP - 587 EP - 623 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Chemical and biological field-effect sensors for liquids – a status report JF - Handbook of biosensors and biochips / ed. Robert S. Marks ... Bd. 1 Y1 - 2007 SN - 978-0-470-01905-4 SP - 395 EP - 412 PB - Wiley CY - Chichester ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Silicon-based chemical and biological field-effect sensors T2 - Encyclopedia of Sensors. Vol. 9 S - Sk Y1 - 2006 SN - 1-58883-065-9 SP - 463 EP - 534 PB - ASP, American Scientific Publ. CY - Stevenson Ranch, Calif. ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Nanomaterial-Modified Capacitive Field-Effect Biosensors T2 - Springer Series on Chemical Sensors and Biosensors (Methods and Applications) N2 - The coupling of charged molecules, nanoparticles, and more generally, inorganic/organic nanohybrids with semiconductor field-effect devices based on an electrolyte–insulator–semiconductor (EIS) system represents a very promising strategy for the active tuning of electrochemical properties of these devices and, thus, opening new opportunities for label-free biosensing by the intrinsic charge of molecules. The simplest field-effect sensor is a capacitive EIS sensor, which represents a (bio-)chemically sensitive capacitor. In this chapter, selected examples of recent developments in the field of label-free biosensing using nanomaterial-modified capacitive EIS sensors are summarized. In the first part, we present applications of EIS sensors modified with negatively charged gold nanoparticles for the label-free electrostatic detection of positively charged small proteins and macromolecules, for monitoring the layer-by-layer formation of oppositely charged polyelectrolyte (PE) multilayers as well as for the development of an enzyme-based biomolecular logic gate. In the second part, examples of a label-free detection by means of EIS sensors modified with a positively charged weak PE layer are demonstrated. These include electrical detection of on-chip and in-solution hybridized DNA (deoxyribonucleic acid) as well as an EIS sensor with pH-responsive weak PE/enzyme multilayers for enhanced field-effect biosensing. KW - Biomolecular logic gate KW - DNA KW - Enzyme biosensor KW - Field-effect sensor KW - Gold nanoparticle Y1 - 2017 U6 - http://dx.doi.org/10.1007/5346_2017_2 SP - 1 EP - 25 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Label-free sensing of biomolecules with field-effect devices for clinical applications JF - Electroanalysis N2 - Among the variety of transducer concepts proposed for label-free detection of biomolecules, the semiconductor field-effect device (FED) is one of the most attractive platforms. As medical techniques continue to progress towards diagnostic and therapies based on biomarkers, the ability of FEDs for a label-free, fast and real-time detection of multiple pathogenic and physiologically relevant molecules with high specificity and sensitivity offers very promising prospects for their application in point-of-care and personalized medicine for an early diagnosis and treatment of diseases. The presented paper reviews recent advances and current trends in research and development of different FEDs for label-free, direct electrical detection of charged biomolecules by their intrinsic molecular charge. The authors are mainly focusing on the detection of the DNA hybridization event, antibody-antigen affinity reaction as well as clinically relevant biomolecules such as cardiac and cancer biomarkers. Y1 - 2014 U6 - http://dx.doi.org/10.1002/elan.201400073 SN - 1521-4109 (E-Journal); 1040-0397 (Print) VL - 26 IS - 6 SP - 1197 EP - 1213 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Capacitive field-effect eis chemical sensors and biosensors: A status report JF - Sensors N2 - Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed. Y1 - 2020 U6 - http://dx.doi.org/10.3390/s20195639 SN - 1424-8220 VL - 20 IS - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schöning, Michael Josef T1 - Recent progress in silicon-based biologically sensitive field-effect devices JF - Current Opinion in Electrochemistry N2 - Biologically sensitive field-effect devices (BioFEDs) advantageously combine the electronic field-effect functionality with the (bio)chemical receptor’s recognition ability for (bio)chemical sensing. In this review, basic and widely applied device concepts of silicon-based BioFEDs (ion-sensitive field-effect transistor, silicon nanowire transistor, electrolyte-insulator-semiconductor capacitor, light-addressable potentiometric sensor) are presented and recent progress (from 2019 to early 2021) is discussed. One of the main advantages of BioFEDs is the label-free sensing principle enabling to detect a large variety of biomolecules and bioparticles by their intrinsic charge. The review encompasses applications of BioFEDs for the label-free electrical detection of clinically relevant protein biomarkers, deoxyribonucleic acid molecules and viruses, enzyme-substrate reactions as well as recording of the cell acidification rate (as an indicator of cellular metabolism) and the extracellular potential. Y1 - 2021 U6 - http://dx.doi.org/10.1016/j.coelec.2021.100811 SN - 2451-9103 IS - Article number: 100811 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schusser, Sebastian A1 - Bäcker, M. A1 - Leinhos, Marcel A1 - Schöning, Michael Josef T1 - Real-time in-situ electrical monitoring of the degradation of biopolymers using semiconductor field-effect devices T2 - Biodegradable biopolymers. Vol. 1 Y1 - 2015 SN - 978-1-63483-632-6 SP - 135 EP - 153 PB - Nova Science Publ. CY - Hauppauge ER - TY - CHAP A1 - Poghossian, Arshak A1 - Schumacher, Kerstin A1 - Kloock, Joachim P. A1 - Rosenkranz, Christian A1 - Schultze, Joachim W. A1 - Müller-Veggian, Mattea A1 - Schöning, Michael Josef T1 - Functional testing and characterisation of ISFETs on wafer level by means of a micro-droplet cell N2 - A wafer-level functionality testing and characterisation system for ISFETs (ionsensitive field-effect transistor) is realised by means of integration of a specifically designed capillary electrochemical micro-droplet cell into a commercial wafer prober-station. The developed system allows the identification and selection of “good” ISFETs at the earliest stage and to avoid expensive bonding, encapsulation and packaging processes for nonfunctioning ISFETs and thus, to decrease costs, which are wasted for bad dies. The developed system is also feasible for wafer-level characterisation of ISFETs in terms of sensitivity, hysteresis and response time. Additionally, the system might be also utilised for wafer-level testing of further electrochemical sensors. KW - Biosensor KW - Biosensorik KW - ISFET KW - Wafer KW - ISFET KW - wafer-level testing KW - capillary micro-droplet cell Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1259 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schultze, J. W. A1 - Schöning, Michael Josef T1 - Application of a (bio-)chemical sensor (ISFET) for the detection of physical parameters in liquids JF - Electrochimica Acta. 48 (2003), H. 20-22 Y1 - 2003 SP - 3289 EP - 3297 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Schultze, J. W. A1 - Schöning, Michael Josef T1 - Multi-parameter detection of (bio-)chemical and physical quantities using an identical transducer principle JF - Sensors and Actuators B. 91 (2003), H. 1-3 Y1 - 2003 SN - 0925-4005 SP - 83 EP - 91 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Platen, J. A1 - Schöning, Michael Josef T1 - Towards self-aligned nanostructures by means of layerexpansion technique JF - Electrochimica Acta. 51 (2005), H. 5 Y1 - 2005 SN - 0013-4686 SP - 838 EP - 843 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Malzahn, K. A1 - Abouzar, Maryam H. A1 - Mehndiratta, P. A1 - Katz, E. A1 - Schöning, Michael Josef T1 - Integration of biomolecular logic gates with field-effect transducers JF - Electrochimica Acta. 56 (2011), H. 26 Y1 - 2011 SN - 0013-4686 SP - 9661 EP - 9665 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Poghossian, Arshak A1 - Mai, D.-T. A1 - Mourzina, Y. A1 - Schöning, Michael Josef T1 - Impedance effect of an ion-sensitive membrane: characterisation of an EMIS sensor by impedance spectroscopy, capacitance-voltage and constant-capacitance method JF - Sensors and Actuators B. 103 (2004), H. 1-2 Y1 - 2004 SN - 0925-4005 SP - 423 EP - 428 ER - TY - JOUR A1 - Poghossian, Arshak A1 - Lüth, H. A1 - Schultze, J. W. A1 - Schöning, Michael Josef T1 - (Bio-)chemical and physical microsensor array using an identical transducer principle JF - Scaling down in electrochemistry : electrochemical micro- and nanosystem technology ; proceedings of the 3rd International Symposium on Electrochemical Microsystem Technologies, Garmisch-Patenkirchen, Germany, 11 - 15 September 2000 / ed. by J. W. Schultz Y1 - 2001 SN - 0-08-044014-2 SP - 243 EP - 249 PB - Elsevier [u.a.] CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Poghossian, Arshak A1 - Krämer, Melina A1 - Abouzar, Maryam H. A1 - Pita, Marcos A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Interfacing of biocomputing systems with silicon chips: Enzyme logic gates based on field-effect devices JF - Procedia Chemistry. 1 (2009), H. 1 Y1 - 2009 SN - 1876-6196 N1 - Proceedings of the Eurosensors XXIII conference ; Eurosensors 23 SP - 682 EP - 685 PB - Elsevier CY - Amsterdam ER -