TY - CHAP A1 - Schwarzer, Klemens A1 - Vieira, Maria Eugenia A1 - Müller, Christoph A1 - Lehmann, Harry A1 - Coutinho, Lecimara T1 - Modular solar thermal desalination system with flat plate collector T2 - RIO 3 - World Climate & Energy Event : proceedings of the international conference held in Rio de Janeiro, Brazil, 1 -5 december 2003 / chief-ed.: Stefan Krauter ... Y1 - 2003 SN - 85-902710-2-1 SP - 281 EP - 286 PB - Krauter CY - Rio de Janeiro ER - TY - CHAP A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Hoffschmidt, Bernhard A1 - Breitbach, Gerd A1 - Latzke, Markus T1 - Modelling and validation of a transient heat recovery steam generator of the solar tower power plant Juelich T2 - Eurosun 2012 : Solar energy for a brighter future : conference proceedings : Rijeka, 18.-22.09.2012 Y1 - 2012 SP - ID 97 CY - Rijeka ER - TY - CHAP A1 - Zahra, Mahdi A1 - Phani Srujan, Merige A1 - Caminos, Ricardo Alexander Chico A1 - Schmitz, Pascal A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Gedle, Yibekal A1 - Dersch, Jürgen T1 - Modeling the thermal behavior of solar salt in electrical resistance heaters for the application in PV-CSP hybrid power plants T2 - SOLARPACES 2020 N2 - Concentrated Solar Power (CSP) systems are able to store energy cost-effectively in their integrated thermal energy storage (TES). By intelligently combining Photovoltaics (PV) systems with CSP, a further cost reduction of solar power plants is expected, as well as an increase in dispatchability and flexibility of power generation. PV-powered Resistance Heaters (RH) can be deployed to raise the temperature of the molten salt hot storage from 385 °C up to 565 °C in a Parabolic Trough Collector (PTC) plant. To avoid freezing and decomposition of molten salt, the temperature distribution in the electrical resistance heater is investigated in the present study. For this purpose, a RH has been modeled and CFD simulations have been performed. The simulation results show that the hottest regions occur on the electric rod surface behind the last baffle. A technical optimization was performed by adjusting three parameters: Shell-baffle clearance, electric rod-baffle clearance and number of baffles. After the technical optimization was carried out, the temperature difference between the maximum temperature and the average outlet temperature of the salt is within the acceptable limits, thus critical salt decomposition has been avoided. Additionally, the CFD simulations results were analyzed and compared with results obtained with a one-dimensional model in Modelica. KW - Solar thermal technologies KW - Hybrid energy system KW - Concentrated solar power KW - Energy storage KW - Photovoltaics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086268 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Rendon, Carlos A1 - Schwager, Christian A1 - Ghiasi, Mona A1 - Schmitz, Pascal A1 - Bohang, Fakhri A1 - Caminos, Ricardo Alexander Chico A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Modeling and upscaling of a pilot bayonettube reactor for indirect solar mixed methane reforming T2 - AIP Conference Proceedings N2 - A 16.77 kW thermal power bayonet-tube reactor for the mixed reforming of methane using solar energy has been designed and modeled. A test bench for the experimental tests has been installed at the Synlight facility in Juelich, Germany and has just been commissioned. This paper presents the solar-heated reactor design for a combined steam and dry reforming as well as a scaled-up process simulation of a solar reforming plant for methanol production. Solar power towers are capable of providing large amounts of heat to drive high-endothermic reactions, and their integration with thermochemical processes shows a promising future. In the designed bayonet-tube reactor, the conventional burner arrangement for the combustion of natural gas has been substituted by a continuous 930 °C hot air stream, provided by means of a solar heated air receiver, a ceramic thermal storage and an auxiliary firing system. Inside the solar-heated reactor, the heat is transferred by means of convective mechanism mainly; instead of radiation mechanism as typically prevailing in fossil-based industrial reforming processes. A scaled-up solar reforming plant of 50.5 MWth was designed and simulated in Dymola® and AspenPlus®. In comparison to a fossil-based industrial reforming process of the same thermal capacity, a solar reforming plant with thermal storage promises a reduction up to 57 % of annual natural gas consumption in regions with annual DNI-value of 2349 kWh/m2. The benchmark solar reforming plant contributes to a CO2 avoidance of approx. 79 kilotons per year. This facility can produce a nominal output of 734.4 t of synthesis gas and out of this 530 t of methanol a day. Y1 - 2020 U6 - https://doi.org/10.1063/5.0029974 N1 - SOLARPACES 2019: International Conference on Concentrating Solar Power and Chemical Energy Systems, 1–4 October 2019, Daegu, South Korea IS - 2303 SP - 170012-1 EP - 170012-9 ER - TY - CHAP A1 - Schwager, Christian A1 - Angele, Florian A1 - Schwarzbözl, Peter A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Model predictive assistance for operational decision making in molten salt receiver systems T2 - SolarPACES: Solar Power & Chemical Energy Systems N2 - Despite the challenges of pioneering molten salt towers (MST), it remains the leading technology in central receiver power plants today, thanks to cost effective storage integration and high cost reduction potential. The limited controllability in volatile solar conditions can cause significant losses, which are difficult to estimate without comprehensive modeling [1]. This paper presents a Methodology to generate predictions of the dynamic behavior of the receiver system as part of an operating assistance system (OAS). Based on this, it delivers proposals if and when to drain and refill the receiver during a cloudy period in order maximize the net yield and quantifies the amount of net electricity gained by this. After prior analysis with a detailed dynamic two-phase model of the entire receiver system, two different reduced modeling approaches where developed and implemented in the OAS. A tailored decision algorithm utilizes both models to deliver the desired predictions efficiently and with appropriate accuracy. KW - Power plants KW - Associated liquids KW - Decision theory KW - Electrochemistry Y1 - 2023 SN - 978-0-7354-4623-6 U6 - https://doi.org/10.1063/5.0151514 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SolarPACES: SOLAR POWER & CHEMICAL ENERGY SYSTEMS: 27th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27 September–1 October 2021, Online IS - 2815 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Schulze-Buxloh, Lina A1 - Groß, Rolf Fritz T1 - Miniature urban farming plant: a complex educational “Toy” for engineering students T2 - The Future of Education 11th Edition 2021 N2 - Urban farming is an innovative and sustainable way of food production and is becoming more and more important in smart city and quarter concepts. It also enables the production of certain foods in places where they usually dare not produced, such as production of fish or shrimps in large cities far away from the coast. Unfortunately, it is not always possible to show students such concepts and systems in real life as part of courses: visits of such industry plants are sometimes not possible because of distance or are permitted by the operator for hygienic reasons. In order to give the students the opportunity of getting into contact with such an urban farming system and its complex operation, an industrial urban farming plant was set up on a significantly smaller scale. Therefore, all needed technical components like water aeriation, biological and mechanical filtration or water circulation have been replaced either by aquarium components or by self-designed parts also using a 3D-printer. Students from different courses like mechanical engineering, smart building engineering, biology, electrical engineering, automation technology and civil engineering were involved in this project. This “miniature industrial plant” was also able to start operation and has now been running for two years successfully. Due to Corona pandemic, home office and remote online lectures, the automation of this miniature plant should be brought to a higher level in future for providing a good control over the system and water quality remotely. The aim of giving the student a chance to get to know the operation of an urban farming plant was very well achieved and the students had lots of fun in “playing” and learning with it in a realistic way. KW - urban farming KW - food production KW - smart engineering KW - 3D printing KW - sustainability Y1 - 2021 N1 - FOE 2021 : The Future of Education International Conference – Fully Virtual Edition; 01.07.2021-02.07.2021; Florence, Italy ER - TY - CHAP A1 - Beckmöller, S. A1 - Wolters, J. A1 - Breitbach, Gerd A1 - Penkalla, H. J. A1 - Schubert, F. T1 - Microstructural dependent constitutive equation for inelastic analysis of internally cooled IN 738 LC turbine blades T2 - Materials for advanced power engineering 1994 : proceedings of a conference held in Liege, Belgium, 3 - 6 Oct. 1994 Y1 - 1995 SN - 0792330749 SP - 829 EP - 839 PB - Kluwer CY - Dordrecht ER - TY - JOUR A1 - Vieira da Silva, Maria Eugenia A1 - Schwarzer, Klemens A1 - Hoffschmidt, Bernhard A1 - Pinheiro Rodrigues, Frederico A1 - Schwarzer, Tarik A1 - Costa Rocha, Paulo Alexandre T1 - Mass transfer correlation for evaporation–condensation thermal process in the range of 70 °C–95 °C JF - Renewable energy Y1 - 2013 SN - 1879-0682 (E-Journal); 0960-1481 (Print) VL - Vol. 53 SP - 174 EP - 179 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Göttsche, Joachim A1 - Hove, T. T1 - Mapping global, diffuse and beam solar radiation over Zimbabwe / T. Hove ; J. Göttsche JF - Renewable energy. 18 (1999), H. 4 Y1 - 1999 SN - 1879-0682 SP - 535 EP - 556 ER - TY - CHAP A1 - Anthrakidis, Anette A1 - Rusack, Markus A1 - Schwarzer, Klemens T1 - Low effort measurement method of PTC-efficiency T2 - SolarPACES 2010 : the CSP conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France Y1 - 2010 SP - 48 EP - 49 PB - Soc. OSC CY - Saint Maur ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Faber, Christian T1 - Lighthouse project for North-Rhine Westfalia - Solar thermal R & D Power Planet in Jülich T2 - Energy security, climate change and sustainable development / ed. Jyotirmay Mathur ... Y1 - 2007 SN - 81-88342-81-5 SP - 101 EP - 116 PB - Anamaya Publ. CY - New Delhi ER - TY - CHAP A1 - Sauerborn, Markus T1 - Investigations to the influence of clouds and aerosols to the haze of the sunshape T2 - SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain Y1 - 2011 CY - Granada ER - TY - JOUR A1 - Reisgen, Uwe A1 - Schleser, Markus A1 - Abdurakhmanov, Aydemir A1 - Turichin, Gleb A1 - Valdaitseva, Elena A1 - Bach, Friedrich-Wilhelm A1 - Hassel, Thomas A1 - Beniyashi, Alexander T1 - Investigation of factors influencing the formation of weld defects in non-vacuum electron beam welding JF - The Paton welding journal N2 - The influence of welding condition parameters and properties of material on formation of defects, such as humping and undercuts, in non-vacuum electron beam welding was investigated. The influence of separate welding parameters on the quality of welds was determined. Y1 - 2012 SN - 0957-798X VL - 2012 IS - 2 SP - 11 EP - 18 PB - Paton Publishing House CY - Kiev ER - TY - CHAP A1 - Niederwestberg, Stefan A1 - Schneider, Falko A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Introduction to a direct irradiated transparent tube particle receiver T2 - SOLARPACES 2020 N2 - New materials often lead to innovations and advantages in technical applications. This also applies to the particle receiver proposed in this work that deploys high-temperature and scratch resistant transparent ceramics. With this receiver design, particles are heated through direct-contact concentrated solar irradiance while flowing downwards through tubular transparent ceramics from top to bottom. In this paper, the developed particle receiver as well as advantages and disadvantages are described. Investigations on the particle heat-up characteristics from solar irradiance were carried out with DEM simulations which indicate that particle temperatures can reach up to 1200 K. Additionally, a simulation model was set up for investigating the dynamic behavior. A test receiver at laboratory scale has been designed and is currently being built. In upcoming tests, the receiver test rig will be used to validate the simulation results. The design and the measurement equipment is described in this work. KW - Solar irradiance KW - Ceramics Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086735 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Schulze-Buxloh, Lina A1 - Groß, Rolf Fritz T1 - Interdisciplinary Course Smart Building Engineering: A new approach of teaching freshmen in remote teamwork project under pandemic restrictions T2 - New Perspectives in Science Education - International Conference N2 - In the context of the Corona pandemic and its impact on teaching like digital lectures and exercises a new concept especially for freshmen in demanding courses of Smart Building Engineering became necessary. As there were hardly any face-to-face events at the university, the new teaching concept should enable a good start into engineering studies under pandemic conditions anyway and should also replace the written exam at the end. The students should become active themselves in small teams instead of listening passively to a lecture broadcast online with almost no personal contact. For this purpose, a role play was developed in which the freshmen had to work out a complete solution to the realistic problem of designing, construction planning and implementing a small guesthouse. Each student of the team had to take a certain role like architect, site manager, BIM-manager, electrician and the technitian for HVAC installations. Technical specifications must be complied with, as well as documentation, time planning and cost estimate. The final project folder had to contain technical documents like circuit diagrams for electrical components, circuit diagrams for water and heating, design calculations and components lists. On the other hand construction schedule, construction implementation plan, documentation of the construction progress and minutes of meetings between the various trades had to be submitted as well. In addition to the project folder, a model of the construction project must also be created either as a handmade model or as a digital 3D-model using Computer-aided design (CAD) software. The first steps in the field of Building information modelling (BIM) had also been taken by creating a digital model of the building showing the current planning status in real time as a digital twin. This project turned out to be an excellent training of important student competencies like teamwork, communication skills, and self -organisation and also increased motivation to work on complex technical questions. The aim of giving the student a first impression on the challenges and solutions in building projects with many different technical trades and their points of view was very well achieved and should be continued in the future. KW - Freshmen KW - roleplay KW - Smart Building Engineering KW - BIM KW - remote teamwork Y1 - 2021 N1 - New Perspectives in Science Education - 10th Edition, 18-19 March 2021, Fully Virtual Conference PB - Filodiritto CY - Bologna ER - TY - CHAP A1 - Fricke, Barbara A1 - Ziolko, C. A1 - Anthrakidis, Anette A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard A1 - Dillig, M. A1 - Giese, F. T1 - InnoSol - life cycle analysis of solar power tower plants T2 - SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain Y1 - 2011 CY - Granada ER - TY - CHAP A1 - Fricke, Barbara A1 - Ziolko, C. A1 - Anthrakidis, Anette A1 - Alexopoulos, Spiros A1 - Hoffschmidt, Bernhard A1 - Giese, F. A1 - Dillig, M. T1 - InnoSol - environmental aspects of the open volumetric receiver technology T2 - 30th ISES Biennial Solar World Congress 2011 : : Kassel, Germany, 28 August - 2 September 2011. Vol. 5 Y1 - 2012 SP - 3895 EP - 3900 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Sauerborn, Markus A1 - Arshadi, S. A1 - Rohrmoser, R. T1 - Influence of clouds and aerosols to the haze of the sunshape T2 - 30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 5 Y1 - 2012 SP - 3887 EP - 3894 PB - Curran CY - Red Hook, NY ER - TY - CHAP A1 - Schwager, Christian A1 - Teixeira Boura, Cristiano José A1 - Flesch, Robert A1 - Alexopoulos, Spiros A1 - Herrmann, Ulf T1 - Improved efficiency prediction of a molten salt receiver based on dynamic cloud passage simulation T2 - AIP Conference Proceedings Y1 - 2019 SN - 978-0-7354-1866-0 U6 - https://doi.org/10.1063/1.5117566 VL - 2126 IS - 1 SP - 030054-1 EP - 030054-8 ER - TY - CHAP A1 - Schwager, Christian A1 - Angele, Florian A1 - Nouri, Bijan A1 - Schwarzbözl, Peter A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Impact of DNI forecast quality on performance prediction for a commercial scale solar tower: Application of nowcasting DNI maps to dynamic solar tower simulation T2 - SolarPACES 2022 conference proceedings N2 - Concerning current efforts to improve operational efficiency and to lower overall costs of concentrating solar power (CSP) plants with prediction-based algorithms, this study investigates the quality and uncertainty of nowcasting data regarding the implications for process predictions. DNI (direct normal irradiation) maps from an all-sky imager-based nowcasting system are applied to a dynamic prediction model coupled with ray tracing. The results underline the need for high-resolution DNI maps in order to predict net yield and receiver outlet temperature realistically. Furthermore, based on a statistical uncertainty analysis, a correlation is developed, which allows for predicting the uncertainty of the net power prediction based on the corresponding DNI forecast uncertainty. However, the study reveals significant prediction errors and the demand for further improvement in the accuracy at which local shadings are forecasted. KW - Process prediction KW - DNI forecasting KW - Nowcasting KW - Uncertainty analysis KW - Molten salt receiver system, Y1 - 2024 U6 - https://doi.org/10.52825/solarpaces.v1i.675 SN - 2751-9899 (online) N1 - SolarPACES 2022, 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - 1 PB - TIB Open Publishing CY - Hannover ER -