TY - CHAP A1 - Hüning, Felix T1 - Sustainable changes beyond covid-19 for a second semester physics course for electrical engineering students T2 - Blended Learning in Engineering Education: challenging, enlightening – and lasting? N2 - The course Physics for Electrical Engineering is part of the curriculum of the bachelor program Electrical Engineering at University of Applied Science Aachen. Before covid-19 the course was conducted in a rather traditional way with all parts (lecture, exercise and lab) face-to-face. This teaching approach changed fundamentally within a week when the covid-19 limitations forced all courses to distance learning. All parts of the course were transformed to pure distance learning including synchronous and asynchronous parts for the lecture, live online-sessions for the exercises and self-paced labs at home. Using these methods, the course was able to impart the required knowledge and competencies. Taking the teacher’s observations of the student’s learning behaviour and engagement, the formal and informal feedback of the students and the results of the exams into account, the new methods are evaluated with respect to effectiveness, sustainability and suitability for competence transfer. Based on this analysis strong and weak points of the concept and countermeasures to solve the weak points were identified. The analysis further leads to a sustainable teaching approach combining synchronous and asynchronous parts with self-paced learning times that can be used in a very flexible manner for different learning scenarios, pure online, hybrid (mixture of online and presence times) and pure presence teaching. Y1 - 2021 SN - 978-2-87352-023-6 N1 - SEFI 49th Annual Conference, Technische Universität Berlin (online), 13 – 16 September 2021 SP - 1424 EP - 1428 ER - TY - CHAP A1 - Meck, Marvin M. A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Improving an industrial cooling system using MINLP, considering capital and operating costs T2 - Operations Research Proceedings 2019 N2 - The chemical industry is one of the most important industrial sectors in Germany in terms of manufacturing revenue. While thermodynamic boundary conditions often restrict the scope for reducing the energy consumption of core processes, secondary processes such as cooling offer scope for energy optimisation. In this contribution, we therefore model and optimise an existing cooling system. The technical boundary conditions of the model are provided by the operators, the German chemical company BASF SE. In order to systematically evaluate different degrees of freedom in topology and operation, we formulate and solve a Mixed-Integer Nonlinear Program (MINLP), and compare our optimisation results with the existing system. KW - Engineering optimisation KW - Mixed-integer programming KW - Industrial optimisation KW - Cooling system KW - Process engineering Y1 - 2020 SN - 978-3-030-48438-5 (Print) SN - 978-3-030-48439-2 (Online) U6 - https://doi.org/10.1007/978-3-030-48439-2_61 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019. SP - 505 EP - 512 PB - Springer CY - Cham ER - TY - CHAP A1 - Müller, Tim M. A1 - Schmitt, Andreas A1 - Leise, Philipp A1 - Meck, Tobias A1 - Altherr, Lena A1 - Pelz, Peter F. A1 - Pfetsch, Marc E. T1 - Validation of an optimized resilient water supply system T2 - Uncertainty in Mechanical Engineering N2 - Component failures within water supply systems can lead to significant performance losses. One way to address these losses is the explicit anticipation of failures within the design process. We consider a water supply system for high-rise buildings, where pump failures are the most likely failure scenarios. We explicitly consider these failures within an early design stage which leads to a more resilient system, i.e., a system which is able to operate under a predefined number of arbitrary pump failures. We use a mathematical optimization approach to compute such a resilient design. This is based on a multi-stage model for topology optimization, which can be described by a system of nonlinear inequalities and integrality constraints. Such a model has to be both computationally tractable and to represent the real-world system accurately. We therefore validate the algorithmic solutions using experiments on a scaled test rig for high-rise buildings. The test rig allows for an arbitrary connection of pumps to reproduce scaled versions of booster station designs for high-rise buildings. We experimentally verify the applicability of the presented optimization model and that the proposed resilience properties are also fulfilled in real systems. KW - Optimization KW - Mixed-integer nonlinear programming KW - Water distribution system KW - Resilience KW - Validation Y1 - 2021 SN - 978-3-030-77255-0 SN - 978-3-030-77256-7 U6 - https://doi.org/10.1007/978-3-030-77256-7_7 N1 - Proceedings of the 4th International Conference on Uncertainty in Mechanical Engineering (ICUME 2021), June 7–8, 2021 SP - 70 EP - 80 PB - Springer CY - Cham ER - TY - CHAP A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Leise, Philipp A1 - Pelz, Peter F. T1 - Optimization of pumping systems for buildings: Experimental validation of different degrees of model detail on a modular test rig T2 - Operations Research Proceedings 2019 N2 - Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge. KW - Experimental validation KW - MINLP KW - Engineering optimization KW - Water supply system KW - Network design Y1 - 2020 SN - 978-3-030-48438-5 U6 - https://doi.org/10.1007/978-3-030-48439-2_58 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 SP - 481 EP - 488 PB - Springer CY - Cham ER - TY - CHAP A1 - Lorenz, Imke-Sophie A1 - Altherr, Lena A1 - Pelz, Peter F. ED - Neufeld, Janis S. ED - Buscher, Udo ED - Lasch, Rainer ED - Möst, Dominik ED - Schönberger, Jörn T1 - Assessing and Optimizing the Resilience of Water Distribution Systems Using Graph-Theoretical Metrics T2 - Operations Research Proceedings 2019 N2 - Water distribution systems are an essential supply infrastructure for cities. Given that climatic and demographic influences will pose further challenges for these infrastructures in the future, the resilience of water supply systems, i.e. their ability to withstand and recover from disruptions, has recently become a subject of research. To assess the resilience of a WDS, different graph-theoretical approaches exist. Next to general metrics characterizing the network topology, also hydraulic and technical restrictions have to be taken into account. In this work, the resilience of an exemplary water distribution network of a major German city is assessed, and a Mixed-Integer Program is presented which allows to assess the impact of capacity adaptations on its resilience. KW - OR 2019 KW - business analytics KW - decision analytics KW - digital economy KW - mathematical optimization Y1 - 2020 SN - 978-3-030-48439-2 SN - 978-3-030-48438-5 U6 - https://doi.org/10.1007/978-3-030-48439-2_63 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 SP - 521 EP - 527 PB - Springer CY - Cham ER - TY - CHAP A1 - Leise, Philipp A1 - Simon, Nicolai A1 - Altherr, Lena T1 - Comparison of Piecewise Linearization Techniques to Model Electric Motor Efficiency Maps: A Computational Study T2 - Operations Research Proceedings 2019 N2 - To maximize the travel distances of battery electric vehicles such as cars or buses for a given amount of stored energy, their powertrains are optimized energetically. One key part within optimization models for electric powertrains is the efficiency map of the electric motor. The underlying function is usually highly nonlinear and nonconvex and leads to major challenges within a global optimization process. To enable faster solution times, one possibility is the usage of piecewise linearization techniques to approximate the nonlinear efficiency map with linear constraints. Therefore, we evaluate the influence of different piecewise linearization modeling techniques on the overall solution process and compare the solution time and accuracy for methods with and without explicitly used binary variables. KW - MINLP KW - Powertrain KW - Piecewise linearization KW - Efficiency optimization Y1 - 2020 SN - 978-3-030-48439-2 SN - 978-3-030-48438-5 U6 - https://doi.org/10.1007/978-3-030-48439-2_55 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 SP - 457 EP - 463 PB - Springer CY - Cham ER - TY - CHAP A1 - Chajan, Eduard A1 - Schulte-Tigges, Joschua A1 - Reke, Michael A1 - Ferrein, Alexander A1 - Matheis, Dominik A1 - Walter, Thomas T1 - GPU based model-predictive path control for self-driving vehicles T2 - IEEE Intelligent Vehicles Symposium (IV) N2 - One central challenge for self-driving cars is a proper path-planning. Once a trajectory has been found, the next challenge is to accurately and safely follow the precalculated path. The model-predictive controller (MPC) is a common approach for the lateral control of autonomous vehicles. The MPC uses a vehicle dynamics model to predict the future states of the vehicle for a given prediction horizon. However, in order to achieve real-time path control, the computational load is usually large, which leads to short prediction horizons. To deal with the computational load, the control algorithm can be parallelized on the graphics processing unit (GPU). In contrast to the widely used stochastic methods, in this paper we propose a deterministic approach based on grid search. Our approach focuses on systematically discovering the search area with different levels of granularity. To achieve this, we split the optimization algorithm into multiple iterations. The best sequence of each iteration is then used as an initial solution to the next iteration. The granularity increases, resulting in smooth and predictable steering angle sequences. We present a novel GPU-based algorithm and show its accuracy and realtime abilities with a number of real-world experiments. KW - Heuristic algorithms KW - Computational modeling KW - model-predictive control KW - GPU KW - autonomous driving Y1 - 2021 SN - 978-1-7281-5394-0 U6 - https://doi.org/10.1109/IV48863.2021.9575619 N1 - 2021 IEEE Intelligent Vehicles Symposium (IV), July 11-17, 2021. Nagoya, Japan SP - 1243 EP - 1248 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Hüning, Felix A1 - Wache, Franz-Josef A1 - Magiera, David T1 - Redundant bus systems using dual-mode radio T2 - Proceedings of Sixth International Congress on Information and Communication Technology N2 - Communication via serial bus systems, like CAN, plays an important role for all kinds of embedded electronic and mechatronic systems. To cope up with the requirements for functional safety of safety-critical applications, there is a need to enhance the safety features of the communication systems. One measure to achieve a more robust communication is to add redundant data transmission path to the applications. In general, the communication of real-time embedded systems like automotive applications is tethered, and the redundant data transmission lines are also tethered, increasing the size of the wiring harness and the weight of the system. A radio link is preferred as a redundant transmission line as it uses a complementary transmission medium compared to the wired solution and in addition reduces wiring harness size and weight. Standard wireless links like Wi-Fi or Bluetooth cannot meet the requirements for real-time capability with regard to bus communication. Using the new dual-mode radio enables a redundant transmission line meeting all requirements with regard to real-time capability, robustness and transparency for the data bus. In addition, it provides a complementary transmission medium with regard to commonly used tethered links. A CAN bus system is used to demonstrate the redundant data transfer via tethered and wireless CAN. Y1 - 2021 SN - 978-981-16-2379-0 SN - 978-981-16-2380-6 U6 - https://doi.org/10.1007/978-981-16-2380-6_73 N1 - Sixth International Congress on Information and Communication Technology, ICICT 2021, Brunel University, London, February 25–26, 2021 SP - 835 EP - 842 PB - Springer CY - Singapore ER - TY - CHAP A1 - Hüning, Felix A1 - Stüttgen, Marcel T1 - Work in Progress: Interdisciplinary projects in times of COVID-19 crisis – challenges, risks and chances T2 - 2021 IEEE Global Engineering Education Conference (EDUCON) N2 - Project work and inter disciplinarity are integral parts of today's engineering work. It is therefore important to incorporate these aspects into the curriculum of academic studies of engineering. At the faculty of Electrical Engineering and Information Technology an interdisciplinary project is part of the bachelor program to address these topics. Since the summer term 2020 most courses changed to online mode during the Covid-19 crisis including the interdisciplinary projects. This online mode introduces additional challenges to the execution of the projects, both for the students as well as for the lecture. The challenges, but also the risks and chances of this kind of project courses are subject of this paper, based on five different interdisciplinary projects Y1 - 2021 U6 - https://doi.org/10.1109/EDUCON46332.2021.9454006 N1 - 2021 IEEE Global Engineering Education Conference (EDUCON), 21-23 April 2021, Vienna, Austria SP - 1175 EP - 1179 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Hoegen, Anne von A1 - Doncker, Rik W. De A1 - Bragard, Michael A1 - Hoegen, Svenja von T1 - Problem-based learning in automation engineering: performing a remote laboratory aession aerving various educational attainments T2 - 2021 IEEE Global Engineering Education Conference (EDUCON) N2 - During the Covid-19 pandemic, vocational colleges, universities of applied science and technical universities often had to cancel laboratory sessions requiring students’ attendance. These above of all are of decisive importance in order to give learners an understanding of theory through practical work.This paper is a contribution to the implementation of distance learning for laboratory work applicable for several upper secondary educational facilities. Its aim is to provide a paradigm for hybrid teaching to analyze and control a non-linear system depicted by a tank model. For this reason, we redesign a full series of laboratory sessions on the basis of various challenges. Thus, it is suitable to serve different reference levels of the European Qualifications Framework (EQF).We present problem-based learning through online platforms to compensate the lack of a laboratory learning environment. With a task deduced from their future profession, we give students the opportunity to develop own solutions in self-defined time intervals. A requirements specification provides the framework conditions in terms of time and content for students having to deal with the challenges of the project in a self-organized manner with regard to inhomogeneous previous knowledge. If the concept of Complete Action is introduced in classes before, they will automatically apply it while executing the project.The goal is to combine students’ scientific understanding with a procedural knowledge. We suggest a series of remote laboratory sessions that combine a problem formulation from the subject area of Measurement, Control and Automation Technology with a project assignment that is common in industry by providing extracts from a requirements specification. Y1 - 2021 U6 - https://doi.org/10.1109/EDUCON46332.2021.9453925 N1 - 2021 IEEE Global Engineering Education Conference (EDUCON), 21-23 April 2021, Vienna, Austria SP - 1605 EP - 1614 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Ferrein, Alexander A1 - Meeßen, Marcus A1 - Limpert, Nicolas A1 - Schiffer, Stefan ED - Lepuschitz, Wilfried T1 - Compiling ROS schooling curricula via contentual taxonomies T2 - Robotics in Education N2 - The Robot Operating System (ROS) is the current de-facto standard in robot middlewares. The steadily increasing size of the user base results in a greater demand for training as well. User groups range from students in academia to industry professionals with a broad spectrum of developers in between. To deliver high quality training and education to any of these audiences, educators need to tailor individual curricula for any such training. In this paper, we present an approach to ease compiling curricula for ROS trainings based on a taxonomy of the teaching contents. The instructor can select a set of dedicated learning units and the system will automatically compile the teaching material based on the dependencies of the units selected and a set of parameters for a particular training. We walk through an example training to illustrate our work. Y1 - 2021 SN - 978-3-030-67411-3 U6 - https://doi.org/10.1007/978-3-030-67411-3_5 N1 - RiE: International Conference on Robotics in Education (RiE); Advances in Intelligent Systems and Computing book series (AISC, volume 1316) SP - 49 EP - 60 PB - Springer CY - Cham ER - TY - CHAP A1 - Heuermann, Holger A1 - Harzheim, Thomas A1 - Mühmel, Marc T1 - A maritime harmonic radar search and rescue system using passive and active tags T2 - 2020 17th European Radar Conference (EuRAD) N2 - This article introduces a new maritime search and rescue system based on S-band illumination harmonic radar (HR). Passive and active tags have been developed and tested attached to life jackets and a rescue boat. This system was able to detect and range the active tags up to a range of 5800 m in tests on the Baltic Sea with an antenna input power of only 100 W. All electronic GHz components of the system, excluding the S-band power amplifier, were custom developed for this purpose. Special attention is given to the performance and conceptual differences between passive and active tags used in the system and integration with a maritime X-band navigation radar is demonstrated. KW - Harmonic Radar KW - Rescue System KW - Frequency Doubler KW - Transponder KW - Tag Y1 - 2021 SN - 978-2-87487-061-3 U6 - https://doi.org/10.1109/EuRAD48048.2021.00030 N1 - 17th European Radar Conference, 13th - 15th January 2021, Utrecht, Netherlands SP - 73 EP - 76 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Hoegen, Anne von A1 - Doncker, Rik W. De A1 - Rütters, René T1 - Teaching Digital Control of Operational Amplifier Processes with a LabVIEW Interface and Embedded Hardware T2 - 2020 23rd International Conference on Electrical Machines and Systems (ICEMS) N2 - Control engineering theory is hard to grasp for undergraduates during the first semesters, as it deals with the dynamical behavior of systems also in combination with control strategies on an abstract level. Therefore, operational amplifier (OpAmp) processes are reasonable and very effective systems to connect mathematical description with actual system’s behavior. In this paper, we present an experiment for a laboratory session in which an embedded system, driven by a LabVIEW human machine interface (HMI) via USB, controls the analog circuits.With this setup we want to show the possibility of firstly, analyzing a first order process and secondly, designing a P-and PI-controller. Thereby, the theory of control engineering is always applied to the empirical results in order to break down the abstract level for the students. Y1 - 2020 U6 - https://doi.org/10.23919/ICEMS50442.2020.9290928 N1 - 23rd International Conference on Electrical Machines and Systems (ICEMS), 24-27 November 2020, Hamamatsu, Japan SP - 1117 EP - 1122 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Hofmann, Till A1 - Limpert, Nicolas A1 - Mataré, Victor A1 - Ferrein, Alexander A1 - Lakemeyer, Gerhard T1 - Winning the RoboCup Logistics League with Fast Navigation, Precise Manipulation, and Robust Goal Reasoning T2 - RoboCup 2019: Robot World Cup XXIII. RoboCup Y1 - 2019 SN - 978-3-030-35699-6 U6 - https://doi.org/10.1007/978-3-030-35699-6_41 N1 - Lecture Notes in Computer Science, vol 11531 SP - 504 EP - 516 PB - Springer CY - Cham ER - TY - CHAP A1 - Eltester, Niklas Sebastian A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - A smart factory setup based on the RoboCup logistics league T2 - 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS) N2 - In this paper we present SMART-FACTORY, a setup for a research and teaching facility in industrial robotics that is based on the RoboCup Logistics League. It is driven by the need for developing and applying solutions for digital production. Digitization receives constantly increasing attention in many areas, especially in industry. The common theme is to make things smart by using intelligent computer technology. Especially in the last decade there have been many attempts to improve existing processes in factories, for example, in production logistics, also with deploying cyber-physical systems. An initiative that explores challenges and opportunities for robots in such a setting is the RoboCup Logistics League. Since its foundation in 2012 it is an international effort for research and education in an intra-warehouse logistics scenario. During seven years of competition a lot of knowledge and experience regarding autonomous robots was gained. This knowledge and experience shall provide the basis for further research in challenges of future production. The focus of our SMART-FACTORY is to create a stimulating environment for research on logistics robotics, for teaching activities in computer science and electrical engineering programmes as well as for industrial users to study and explore the feasibility of future technologies. Building on a very successful history in the RoboCup Logistics League we aim to provide stakeholders with a dedicated facility oriented at their individual needs. Y1 - 2020 U6 - https://doi.org/10.1109/ICPS48405.2020.9274766 N1 - 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), 10-12 June 2020, Tampere, Finland. SP - 297 EP - 302 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Kirsch, Maximilian A1 - Mataré, Victor A1 - Ferrein, Alexander A1 - Schiffer, Stefan T1 - Integrating golog++ and ROS for Practical and Portable High-level Control T2 - Proceedings of the 12th International Conference on Agents and Artificial Intelligence - Volume 2 N2 - The field of Cognitive Robotics aims at intelligent decision making of autonomous robots. It has matured over the last 25 or so years quite a bit. That is, a number of high-level control languages and architectures have emerged from the field. One concern in this regard is the action language GOLOG. GOLOG has been used in a rather large number of applications as a high-level control language ranging from intelligent service robots to soccer robots. For the lower level robot software, the Robot Operating System (ROS) has been around for more than a decade now and it has developed into the standard middleware for robot applications. ROS provides a large number of packages for standard tasks in robotics like localisation, navigation, and object recognition. Interestingly enough, only little work within ROS has gone into the high-level control of robots. In this paper, we describe our approach to marry the GOLOG action language with ROS. In particular, we present our architecture on inte grating golog++, which is based on the GOLOG dialect Readylog, with the Robot Operating System. With an example application on the Pepper service robot, we show how primitive actions can be easily mapped to the ROS ActionLib framework and present our control architecture in detail. Y1 - 2020 U6 - https://doi.org/10.5220/0008984406920699 N1 - Proceedings of the 12th International Conference on Agents and Artificial Intelligence: ICAART 2020, Valletta, Malta SP - 692 EP - 699 PB - SciTePress CY - Setúbal, Portugal ER - TY - CHAP A1 - Elgamal, Abdelrahman A1 - Heuermann, Holger T1 - Design and Development of a Hot S-Parameter Measurement System for Plasma and Magnetron Applications T2 - Proceedings of the 2020 German Microwave Conference N2 - This paper presents the design, development and calibration procedures of a novel hot S-parameter measurement system for plasma and magnetron applications with power level up to 6 kW. Based on a vector network analyzer, a power amplifier and two directional couplers, the input matching hotS 11 and transmission hotS 21 of the device under test are measured at 2.45 GHz center frequency and 300MHz bandwidth, while the device is driven by the magnetron. This measurement system opens a new horizon to develop many new industrial applications such as microwave plasma jets, dryer systems, dryers and so forth. Furthermore, the developing, controlling and monitoring a 2kW 2.45GHz plasma jet and a dryer system using the measurement system are presented and explained. Y1 - 2020 SN - 978-3-9820397-1-8 N1 - 13th German Microwave Conference 2020, March 09–11, Cottbus SP - 124 EP - 127 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Finger, Felix A1 - Khalsa, R. A1 - Kreyer, Jörg A1 - Mayntz, Joscha A1 - Braun, Carsten A1 - Dahmann, Peter A1 - Esch, Thomas A1 - Kemper, Hans A1 - Schmitz, O. A1 - Bragard, Michael T1 - An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft T2 - Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt N2 - In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented. Y1 - 2019 ER - TY - CHAP A1 - Reke, Michael A1 - Peter, Daniel A1 - Schulte-Tigges, Joschua A1 - Schiffer, Stefan A1 - Ferrein, Alexander A1 - Walter, Thomas A1 - Matheis, Dominik T1 - A Self-Driving Car Architecture in ROS2 T2 - 2020 International SAUPEC/RobMech/PRASA Conference, Cape Town, South Africa N2 - In this paper we report on an architecture for a self-driving car that is based on ROS2. Self-driving cars have to take decisions based on their sensory input in real-time, providing high reliability with a strong demand in functional safety. In principle, self-driving cars are robots. However, typical robot software, in general, and the previous version of the Robot Operating System (ROS), in particular, does not always meet these requirements. With the successor ROS2 the situation has changed and it might be considered as a solution for automated and autonomous driving. Existing robotic software based on ROS was not ready for safety critical applications like self-driving cars. We propose an architecture for using ROS2 for a self-driving car that enables safe and reliable real-time behaviour, but keeping the advantages of ROS such as a distributed architecture and standardised message types. First experiments with an automated real passenger car at lower and higher speed-levels show that our approach seems feasible for autonomous driving under the necessary real-time conditions. Y1 - 2020 SN - 978-1-7281-4162-6 U6 - https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020 N1 - 2020 International SAUPEC/RobMech/PRASA Conference, 29-31 Jan. 2020, Cape Town, South Africa SP - 1 EP - 6 PB - IEEE CY - New York, NY ER - TY - CHAP A1 - Dinghofer, Kai A1 - Hartung, Frank T1 - Analysis of Criteria for the Selection of Machine Learning Frameworks T2 - 2020 International Conference on Computing, Networking and Communications (ICNC) N2 - With the many achievements of Machine Learning in the past years, it is likely that the sub-area of Deep Learning will continue to deliver major technological breakthroughs [1]. In order to achieve best results, it is important to know the various different Deep Learning frameworks and their respective properties. This paper provides a comparative overview of some of the most popular frameworks. First, the comparison methods and criteria are introduced and described with a focus on computer vision applications: Features and Uses are examined by evaluating papers and articles, Adoption and Popularity is determined by analyzing a data science study. Then, the frameworks TensorFlow, Keras, PyTorch and Caffe are compared based on the previously described criteria to highlight properties and differences. Advantages and disadvantages are compared, enabling researchers and developers to choose a framework according to their specific needs. Y1 - 2020 U6 - https://doi.org/10.1109/ICNC47757.2020.9049650 N1 - 2020 International Conference on Computing, Networking and Communications (ICNC), 17-20 February 2020, Big Island, HI, USA SP - 373 EP - 377 PB - IEEE CY - New York, NY ER -