TY - CHAP
A1 - Tran, Ngoc Trinh
A1 - Trinh, Tu Luc
A1 - Dao, Ngoc Tien
A1 - Giap, Van Tan
A1 - Truong, Manh Khuyen
A1 - Dinh, Thuy Ha
A1 - Staat, Manfred
T1 - Limit and shakedown analysis of structures under random strength
T2 - Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022
N2 - Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables.
KW - Reliability of structures
KW - Stochastic programming
KW - Chance constrained programming
KW - Shakedown analysis
KW - Limit analysis
Y1 - 2022
SN - 978-604-357-084-7
SP - 510
EP - 518
PB - Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik)
CY - Hanoi
ER -
TY - CHAP
A1 - Tran, Thanh Ngoc
A1 - Staat, Manfred
T1 - Uncertainty multimode failure and shakedown analysis of shells
T2 - Direct methods for limit and shakedown analysis of structures / eds. Paolo Fuschi ...
N2 - This paper presents a numerical procedure for reliability analysis of thin plates and shells with respect to plastic collapse or to inadaptation. The procedure involves a deterministic shakedown analysis for each probabilistic iteration, which is based on the upper bound approach and the use of the exact Ilyushin yield surface. Probabilistic shakedown analysis deals with uncertainties originated from the loads, material strength and thickness of the shell. Based on a direct definition of the limit state function, the calculation of the failure probability may be efficiently solved by using the First and Second Order Reliability Methods (FORM and SORM). The problem of reliability of structural systems (series systems) is handled by the application of a special technique which permits to find all the design points corresponding to all the failure modes. Studies show, in this case, that it improves considerably the FORM and SORM results.
KW - Limit analysis
KW - Shakedown analysis
KW - Reliability analysis
KW - Multimode failure
KW - Non-linear optimization
Y1 - 2015
SN - 978-3-319-12927-3 (print) ; 978-3-319-12928-0 (online)
U6 - http://dx.doi.org/10.1007/978-3-319-12928-0_14
SP - 279
EP - 298
PB - Springer
CY - Cham
ER -
TY - CHAP
A1 - Tran, Thanh Ngoc
A1 - Pham, Phu Tinh
A1 - Staat, Manfred
T1 - Reliability analysis of shells based on direct plasticity methods
N2 - Abstracts der CD-Rom Proceedings of the 8th World Congress on Computational Mechanics (WCCM8) and 5th Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) 30.06. - 04.07.2008 Venedig, Italien. 2 Seiten Zusammenfassung der Autoren mit graph. Darst. und Literaturverzeichnis
N2 - Abstracts of the Proceedings of the 8th World Congress on Computational Mechanics (WCCM8) and 5th Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) June 30th - July, 4th 2008, Venice, Italy. 2 pages with abstracts of the authors, Ill. and references.
KW - Finite-Elemente-Methode
KW - Limit analysis
KW - Shakedown analysis
KW - First-order reliability method
KW - second-order reliability method
KW - Sensitivity
Y1 - 2008
ER -
TY - CHAP
A1 - Staat, Manfred
A1 - Tran, Thanh Ngoc
A1 - Pham, Phu Tinh
T1 - Limit and shakedown reliability analysis by nonlinear programming
N2 - 7th International Conference on Reliability of Materials and Structures (RELMAS 2008). June 17 - 20, 2008 ; Saint Petersburg, Russia. pp 354-358. Reprint with corrections in red Introduction Analysis of advanced structures working under extreme heavy loading such as nuclear power plants and piping system should take into account the randomness of loading, geometrical and material parameters. The existing reliability are restricted mostly to the elastic working regime, e.g. allowable local stresses. Development of the limit and shakedown reliability-based analysis and design methods, exploiting potential of the shakedown working regime, is highly needed. In this paper the application of a new algorithm of probabilistic limit and shakedown analysis for shell structures is presented, in which the loading and strength of the material as well as the thickness of the shell are considered as random variables. The reliability analysis problems may be efficiently solved by using a system combining the available FE codes, a deterministic limit and shakedown analysis, and the First and Second Order Reliability Methods (FORM/SORM). Non-linear sensitivity analyses are obtained directly from the solution of the deterministic problem without extra computational costs.
KW - Finite-Elemente-Methode
KW - Limit analysis
KW - Shakedown analysis
Y1 - 2008
ER -
TY - CHAP
A1 - Tran, Thanh Ngoc
A1 - Staat, Manfred
A1 - Kreißig, R.
T1 - Finite element shakedown and limit reliability analysis of thin shells
N2 - A procedure for the evaluation of the failure probability of elastic-plastic thin shell structures is presented. The procedure involves a deterministic limit and shakedown analysis for each probabilistic iteration which is based on the kinematical approach and the use the exact Ilyushin yield surface. Based on a direct definition of the limit state function, the non-linear problems may be efficiently solved by using the First and Second Order Reliabiblity Methods (Form/SORM). This direct approach reduces considerably the necessary knowledge of uncertain technological input data, computing costs and the numerical error. In: Computational plasticity / ed. by Eugenio Onate. Dordrecht: Springer 2007. VII, 265 S. (Computational Methods in Applied Sciences ; 7) (COMPLAS IX. Part 1 . International Center for Numerical Methods in Engineering (CIMNE)). ISBN 978-1-402-06576-7 S. 186-189
KW - Finite-Elemente-Methode
KW - Limit analysis
KW - shakedown analysis
KW - Exact Ilyushin yield surface
KW - Random variable
KW - First Order Reliabiblity Method
Y1 - 2007
ER -
TY - JOUR
A1 - Staat, Manfred
T1 - Local and global collapse pressure of longitudinally flawed pipes and cylindrical vessels
N2 - Limit loads can be calculated with the finite element method (FEM) for any component, defect geometry, and loading. FEM suggests that published long crack limit formulae for axial defects under-estimate the burst pressure for internal surface defects in thick pipes while limit loads are not conservative for deep cracks and for pressure loaded crack-faces. Very deep cracks have a residual strength, which is modelled by a global collapse load. These observations are combined to derive new analytical local and global collapse loads. The global collapse loads are close to FEM limit analyses for all crack dimensions.
KW - Finite-Elemente-Methode
KW - Grenzwertberechnung
KW - Axialbelastung
KW - FEM
KW - Grenzwertberechnung
KW - Axialbelastung
KW - Traglastanalyse
KW - Limit analysis
KW - Global and local collapse
KW - Axially cracked pipe
KW - Pressure loaded crack-face
Y1 - 2005
ER -