TY - JOUR A1 - Topçu, Murat A1 - Madabhushi, Gopal S.P. A1 - Staat, Manfred T1 - A generalized shear-lag theory for elastic stress transfer between matrix and fibres having a variable radius JF - International Journal of Solids and Structures N2 - A generalized shear-lag theory for fibres with variable radius is developed to analyse elastic fibre/matrix stress transfer. The theory accounts for the reinforcement of biological composites, such as soft tissue and bone tissue, as well as for the reinforcement of technical composite materials, such as fibre-reinforced polymers (FRP). The original shear-lag theory proposed by Cox in 1952 is generalized for fibres with variable radius and with symmetric and asymmetric ends. Analytical solutions are derived for the distribution of axial and interfacial shear stress in cylindrical and elliptical fibres, as well as conical and paraboloidal fibres with asymmetric ends. Additionally, the distribution of axial and interfacial shear stress for conical and paraboloidal fibres with symmetric ends are numerically predicted. The results are compared with solutions from axisymmetric finite element models. A parameter study is performed, to investigate the suitability of alternative fibre geometries for use in FRP. KW - Natural fibres KW - Polymer-matrix composites KW - Biocomposites KW - Stress concentrations KW - Finite element analysis Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.ijsolstr.2022.111464 SN - 0020-7683 VL - 239–240 IS - Art. No. 111464 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Uysal, Karya A1 - Firat, Ipek Serat A1 - Creutz, Till A1 - Aydin, Inci Cansu A1 - Artmann, Gerhard A1 - Teusch, Nicole A1 - Temiz Artmann, Aysegül T1 - A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes JF - membranes N2 - Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here. Y1 - 2022 U6 - http://dx.doi.org/10.3390/membranes13010022 N1 - This article belongs to the Special Issue "Latest Scientific Discoveries in Polymer Membranes" VL - 2023 IS - 13(1) PB - MDPI CY - Basel ER - TY - JOUR A1 - Zhantlessova, Sirina A1 - Savitskaya, Irina A1 - Kistaubayeva, Aida A1 - Ignatova, Ludmila A1 - Talipova, Aizhan A1 - Pogrebnjak, Alexander A1 - Digel, Ilya T1 - Advanced “Green” prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy JF - Polymers N2 - Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for “grafting” of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality. KW - coculture KW - pullulan KW - exopolysaccharides KW - prebiotic KW - bacterial cellulose Y1 - 2022 U6 - http://dx.doi.org/10.3390/polym14153224 SN - 2073-4360 N1 - This article belongs to the Special Issue "Cellulose Based Composites" VL - 14 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mandekar, Swati A1 - Holland, Abigail A1 - Thielen, Moritz A1 - Behbahani, Mehdi A1 - Melnykowycz, Mark T1 - Advancing towards Ubiquitous EEG, Correlation of In-Ear EEG with Forehead EEG JF - Sensors N2 - Wearable EEG has gained popularity in recent years driven by promising uses outside of clinics and research. The ubiquitous application of continuous EEG requires unobtrusive form-factors that are easily acceptable by the end-users. In this progression, wearable EEG systems have been moving from full scalp to forehead and recently to the ear. The aim of this study is to demonstrate that emerging ear-EEG provides similar impedance and signal properties as established forehead EEG. EEG data using eyes-open and closed alpha paradigm were acquired from ten healthy subjects using generic earpieces fitted with three custom-made electrodes and a forehead electrode (at Fpx) after impedance analysis. Inter-subject variability in in-ear electrode impedance ranged from 20 kΩ to 25 kΩ at 10 Hz. Signal quality was comparable with an SNR of 6 for in-ear and 8 for forehead electrodes. Alpha attenuation was significant during the eyes-open condition in all in-ear electrodes, and it followed the structure of power spectral density plots of forehead electrodes, with the Pearson correlation coefficient of 0.92 between in-ear locations ELE (Left Ear Superior) and ERE (Right Ear Superior) and forehead locations, Fp1 and Fp2, respectively. The results indicate that in-ear EEG is an unobtrusive alternative in terms of impedance, signal properties and information content to established forehead EEG. KW - in-ear EEG KW - correlation KW - forehead EEG KW - impedance spectroscopy KW - biopotential electrodes Y1 - 2022 U6 - http://dx.doi.org/10.3390/s22041568 SN - 1424-8220 VL - 22 IS - 4 SP - 1 EP - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Stäudle, Benjamin A1 - Seynnes, Olivier A1 - Laps, Guido A1 - Brüggemann, Gert-Peter A1 - Albracht, Kirsten T1 - Altered gastrocnemius contractile behavior in former achilles tendon rupture patients during walking JF - Frontiers in Physiology N2 - Achilles tendon rupture (ATR) remains associated with functional limitations years after injury. Architectural remodeling of the gastrocnemius medialis (GM) muscle is typically observed in the affected leg and may compensate force deficits caused by a longer tendon. Yet patients seem to retain functional limitations during—low-force—walking gait. To explore the potential limits imposed by the remodeled GM muscle-tendon unit (MTU) on walking gait, we examined the contractile behavior of muscle fascicles during the stance phase. In a cross-sectional design, we studied nine former patients (males; age: 45 ± 9 years; height: 180 ± 7 cm; weight: 83 ± 6 kg) with a history of complete unilateral ATR, approximately 4 years post-surgery. Using ultrasonography, GM tendon morphology, muscle architecture at rest, and fascicular behavior were assessed during walking at 1.5 m⋅s–1 on a treadmill. Walking patterns were recorded with a motion capture system. The unaffected leg served as control. Lower limbs kinematics were largely similar between legs during walking. Typical features of ATR-related MTU remodeling were observed during the stance sub-phases corresponding to series elastic element (SEE) lengthening (energy storage) and SEE shortening (energy release), with shorter GM fascicles (36 and 36%, respectively) and greater pennation angles (8° and 12°, respectively). However, relative to the optimal fascicle length for force production, fascicles operated at comparable length in both legs. Similarly, when expressed relative to optimal fascicle length, fascicle contraction velocity was not different between sides, except at the time-point of peak series elastic element (SEE) length, where it was 39 ± 49% lower in the affected leg. Concomitantly, fascicles rotation during contraction was greater in the affected leg during the whole stance-phase, and architectural gear ratios (AGR) was larger during SEE lengthening. Under the present testing conditions, former ATR patients had recovered a relatively symmetrical walking gait pattern. Differences in seen AGR seem to accommodate the profound changes in MTU architecture, limiting the required fascicle shortening velocity. Overall, the contractile behavior of the GM fascicles does not restrict length- or velocity-dependent force potentials during this locomotor task. KW - tendon rupture KW - muscle fascicle behavior KW - walking gait KW - force generation KW - ultrasound imaging Y1 - 2022 U6 - http://dx.doi.org/10.3389/fphys.2022.792576 SN - 1664-042X VL - 13 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Kotliar, Konstantin A1 - Ortner, Marion A1 - Conradi, Anna A1 - Hacker, Patricia A1 - Hauser, Christine A1 - Günthner, Roman A1 - Moser, Michaela A1 - Muggenthaler, Claudia A1 - Diehl-Schmid, Janine A1 - Priller, Josef A1 - Schmaderer, Christoph A1 - Grimmer, Timo T1 - Altered retinal cerebral vessel oscillation frequencies in Alzheimer's disease compatible with impaired amyloid clearance JF - Neurobiology of Aging N2 - Retinal vessels are similar to cerebral vessels in their structure and function. Moderately low oscillation frequencies of around 0.1 Hz have been reported as the driving force for paravascular drainage in gray matter in mice and are known as the frequencies of lymphatic vessels in humans. We aimed to elucidate whether retinal vessel oscillations are altered in Alzheimer's disease (AD) at the stage of dementia or mild cognitive impairment (MCI). Seventeen patients with mild-to-moderate dementia due to AD (ADD); 23 patients with MCI due to AD, and 18 cognitively healthy controls (HC) were examined using Dynamic Retinal Vessel Analyzer. Oscillatory temporal changes of retinal vessel diameters were evaluated using mathematical signal analysis. Especially at moderately low frequencies around 0.1 Hz, arterial oscillations in ADD and MCI significantly prevailed over HC oscillations and correlated with disease severity. The pronounced retinal arterial vasomotion at moderately low frequencies in the ADD and MCI groups would be compatible with the view of a compensatory upregulation of paravascular drainage in AD and strengthen the amyloid clearance hypothesis. KW - Alzheimer's disease KW - Retinal vessel analysis KW - Vasomotions KW - Pulsations KW - Mild cognitive impairment Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.neurobiolaging.2022.08.012 SN - 0197-4580 VL - 120 SP - 117 EP - 127 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Colombo, Daniele A1 - Drira, Slah A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - An element-based formulation for ES-FEM and FS-FEM models for implementation in standard solid mechanics finite element codes for 2D and 3D static analysis JF - International Journal for Numerical Methods in Engineering N2 - Edge-based and face-based smoothed finite element methods (ES-FEM and FS-FEM, respectively) are modified versions of the finite element method allowing to achieve more accurate results and to reduce sensitivity to mesh distortion, at least for linear elements. These properties make the two methods very attractive. However, their implementation in a standard finite element code is nontrivial because it requires heavy and extensive modifications to the code architecture. In this article, we present an element-based formulation of ES-FEM and FS-FEM methods allowing to implement the two methods in a standard finite element code with no modifications to its architecture. Moreover, the element-based formulation permits to easily manage any type of element, especially in 3D models where, to the best of the authors' knowledge, only tetrahedral elements are used in FS-FEM applications found in the literature. Shape functions for non-simplex 3D elements are proposed in order to apply FS-FEM to any standard finite element. KW - distorted element KW - ES-FEM KW - FS-FEM KW - non-simplex S-FEM elements KW - S-FEM Y1 - 2022 U6 - http://dx.doi.org/10.1002/nme.7126 SN - 1097-0207 VL - 124 IS - 2 SP - 402 EP - 433 PB - Wiley CY - Chichester ER - TY - JOUR A1 - Uysal, Karya A1 - Creutz, Till A1 - Firat, Ipek Seda A1 - Artmann, Gerhard A1 - Teusch, Nicole A1 - Temiz Artmann, Aysegül T1 - Bio-functionalized ultra-thin, large-area and waterproof silicone membranes for biomechanical cellular loading and compliance experiments JF - Polymers N2 - Biocompatibility, flexibility and durability make polydimethylsiloxane (PDMS) membranes top candidates in biomedical applications. CellDrum technology uses large area, <10 µm thin membranes as mechanical stress sensors of thin cell layers. For this to be successful, the properties (thickness, temperature, dust, wrinkles, etc.) must be precisely controlled. The following parameters of membrane fabrication by means of the Floating-on-Water (FoW) method were investigated: (1) PDMS volume, (2) ambient temperature, (3) membrane deflection and (4) membrane mechanical compliance. Significant differences were found between all PDMS volumes and thicknesses tested (p < 0.01). They also differed from the calculated values. At room temperatures between 22 and 26 °C, significant differences in average thickness values were found, as well as a continuous decrease in thicknesses within a 4 °C temperature elevation. No correlation was found between the membrane thickness groups (between 3–4 µm) in terms of deflection and compliance. We successfully present a fabrication method for thin bio-functionalized membranes in conjunction with a four-step quality management system. The results highlight the importance of tight regulation of production parameters through quality control. The use of membranes described here could also become the basis for material testing on thin, viscous layers such as polymers, dyes and adhesives, which goes far beyond biological applications. Y1 - 2022 SN - 2073-4360 VL - 14 IS - 11 SP - 2213 PB - MDPI CY - Basel ER - TY - JOUR A1 - Quittmann, Oliver J. A1 - Abel, Thomas A1 - Albracht, Kirsten A1 - Strüder, Heiko K. T1 - Biomechanics of all-out handcycling exercise: kinetics, kinematics and muscular activity of a 15-s sprint test in able-bodied participants JF - Sports Biomechanics N2 - This study aims to quantify the kinematics, kinetics and muscular activity of all-out handcycling exercise and examine their alterations during the course of a 15-s sprint test. Twelve able-bodied competitive triathletes performed a 15-s all-out sprint test in a recumbent racing handcycle that was attached to an ergometer. During the sprint test, tangential crank kinetics, 3D joint kinematics and muscular activity of 10 muscles of the upper extremity and trunk were examined using a power metre, motion capturing and surface electromyography (sEMG), respectively. Parameters were compared between revolution one (R1), revolution two (R2), the average of revolution 3 to 13 (R3) and the average of the remaining revolutions (R4). Shoulder abduction and internal-rotation increased, whereas maximal shoulder retroversion decreased during the sprint. Except for the wrist angles, angular velocity increased for every joint of the upper extremity. Several muscles demonstrated an increase in muscular activation, an earlier onset of muscular activation in crank cycle and an increased range of activation. During the course of a 15-s all-out sprint test in handcycling, the shoulder muscles and the muscles associated to the push phase demonstrate indications for short-duration fatigue. These findings are helpful to prevent injuries and improve performance in all-out handcycling. KW - Handbike KW - sEMG KW - Paralympic sport KW - performance testing KW - high-intensity exercise Y1 - 2022 U6 - http://dx.doi.org/10.1080/14763141.2020.1745266 SN - 1752-6116 (Onlineausgabe) SN - 1476-3141 (Druckausgabe) VL - 21 IS - 10 SP - 1200 EP - 1223 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Marat, Adel K. A1 - Turaliyeva, Moldir A. A1 - Kaiyrmanova, Gulzhan K. T1 - Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production JF - Biology N2 - It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications. Y1 - 2022 U6 - http://dx.doi.org/10.3390/biology11091306 SN - 2079-7737 N1 - This article belongs to the Special Issue "Microbial Ecology and Evolution in Extreme Environments" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Angermann, Susanne A1 - Günthner, Roman A1 - Hanssen, Henner A1 - Lorenz, Georg A1 - Braunisch, Matthias C. A1 - Steubl, Dominik A1 - Matschkal, Julia A1 - Kemmner, Stephan A1 - Hausinger, Renate A1 - Block, Zenonas A1 - Haller, Bernhard A1 - Heemann, Uwe A1 - Kotliar, Konstantin A1 - Grimmer, Timo A1 - Schmaderer, Christoph T1 - Cognitive impairment and microvascular function in end-stage renal disease JF - International Journal of Methods in Psychiatric Research (MPR) N2 - Objective Hemodialysis patients show an approximately threefold higher prevalence of cognitive impairment compared to the age-matched general population. Impaired microcirculatory function is one of the assumed causes. Dynamic retinal vessel analysis is a quantitative method for measuring neurovascular coupling and microvascular endothelial function. We hypothesize that cognitive impairment is associated with altered microcirculation of retinal vessels. Methods 152 chronic hemodialysis patients underwent cognitive testing using the Montreal Cognitive Assessment. Retinal microcirculation was assessed by Dynamic Retinal Vessel Analysis, which carries out an examination recording retinal vessels' reaction to a flicker light stimulus under standardized conditions. Results In unadjusted as well as in adjusted linear regression analyses a significant association between the visuospatial executive function domain score of the Montreal Cognitive Assessment and the maximum arteriolar dilation as response of retinal arterioles to the flicker light stimulation was obtained. Conclusion This is the first study determining retinal microvascular function as surrogate for cerebral microvascular function and cognition in hemodialysis patients. The relationship between impairment in executive function and reduced arteriolar reaction to flicker light stimulation supports the involvement of cerebral small vessel disease as contributing factor for the development of cognitive impairment in this patient population and might be a target for noninvasive disease monitoring and therapeutic intervention. KW - cerebral small vessel disease KW - cognitive impairment KW - dialysis KW - retinal vessels Y1 - 2022 U6 - http://dx.doi.org/10.1002/mpr.1909 SN - 1049-8931 (Print) SN - 1557-0657 (Online) VL - 31 IS - 2 SP - 1 EP - 10 PB - Wiley ER - TY - JOUR A1 - Malinowski, Daniel A1 - Fournier, Yvan A1 - Horbach, Andreas A1 - Frick, Michael A1 - Magliani, Mirko A1 - Kalverkamp, Sebastian A1 - Hildinger, Martin A1 - Spillner, Jan A1 - Behbahani, Mehdi A1 - Hima, Flutura T1 - Computational fluid dynamics analysis of endoluminal aortic perfusion JF - Perfusion N2 - Introduction: In peripheral percutaneous (VA) extracorporeal membrane oxygenation (ECMO) procedures the femoral arteries perfusion route has inherent disadvantages regarding poor upper body perfusion due to watershed. With the advent of new long flexible cannulas an advancement of the tip up to the ascending aorta has become feasible. To investigate the impact of such long endoluminal cannulas on upper body perfusion, a Computational Fluid Dynamics (CFD) study was performed considering different support levels and three cannula positions. Methods: An idealized literature-based- and a real patient proximal aortic geometry including an endoluminal cannula were constructed. The blood flow was considered continuous. Oxygen saturation was set to 80% for the blood coming from the heart and to 100% for the blood leaving the cannula. 50% and 90% venoarterial support levels from the total blood flow rate of 6 l/min were investigated for three different positions of the cannula in the aortic arch. Results: For both geometries, the placement of the cannula in the ascending aorta led to a superior oxygenation of all aortic blood vessels except for the left coronary artery. Cannula placements at the aortic arch and descending aorta could support supra-aortic arteries, but not the coronary arteries. All positions were able to support all branches with saturated blood at 90% flow volume. Conclusions: In accordance with clinical observations CFD analysis reveals, that retrograde advancement of a long endoluminal cannula can considerably improve the oxygenation of the upper body and lead to oxygen saturation distributions similar to those of a central cannulation. KW - computational fluid dynamics analysis KW - simulation KW - endoluminal KW - aortic perfusion KW - extracorporeal membrane oxygenation Y1 - 2022 U6 - http://dx.doi.org/10.1177/02676591221099809 SN - 1477-111X VL - 0 IS - 0 SP - 1 EP - 8 PB - Sage CY - London ER - TY - GEN A1 - Topcu, Murat A1 - Madabhushi, Gopal Santana Phani A1 - Staat, Manfred T1 - Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster N2 - Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster for an elastic stress transfer between matrix and fibres having a variable radius. KW - Natural fibres KW - Polymer-matrix composites KW - Biocomposites KW - Stress concentrations KW - Finite element analysis (FEA) Y1 - 2022 U6 - http://dx.doi.org/10.6084/m9.figshare.19333295.v2 ER - TY - JOUR A1 - Defosse, Jerome A1 - Kleinschmidt, Joris A1 - Schmutz, Axel A1 - Loop, Torsten A1 - Staat, Manfred A1 - Gatzweiler, Karl-Heinz A1 - Wappler, Frank A1 - Schieren, Mark T1 - Dental strain on maxillary incisors during tracheal intubation with double-lumen tubes and different laryngoscopy techniques - a blinded manikin study JF - Journal of Cardiothoracic and Vascular Anesthesia KW - anaesthetic complications KW - dental trauma KW - difficult airway KW - double-lumen tube intubation KW - videolaryngoscopy Y1 - 2022 U6 - http://dx.doi.org/10.1053/j.jvca.2022.02.017 SN - 1053-0770 VL - 36 IS - 8, Part B SP - 3021 EP - 3027 PB - Elsevier CY - New York, NY ER - TY - JOUR A1 - Thiebes, Anja Lena A1 - Klein, Sarah A1 - Zingsheim, Jonas A1 - Möller, Georg H. A1 - Gürzing, Stefanie A1 - Reddemann, Manuel A. A1 - Behbahani, Mehdi A1 - Cornelissen, Christian G. T1 - Effervescent atomizer as novel cell spray technology to decrease the gas-to-liquid ratio JF - pharmaceutics N2 - Cell spraying has become a feasible application method for cell therapy and tissue engineering approaches. Different devices have been used with varying success. Often, twin-fluid atomizers are used, which require a high gas velocity for optimal aerosolization characteristics. To decrease the amount and velocity of required air, a custom-made atomizer was designed based on the effervescent principle. Different designs were evaluated regarding spray characteristics and their influence on human adipose-derived mesenchymal stromal cells. The arithmetic mean diameters of the droplets were 15.4–33.5 µm with decreasing diameters for increasing gas-to-liquid ratios. The survival rate was >90% of the control for the lowest gas-to-liquid ratio. For higher ratios, cell survival decreased to approximately 50%. Further experiments were performed with the design, which had shown the highest survival rates. After seven days, no significant differences in metabolic activity were observed. The apoptosis rates were not influenced by aerosolization, while high gas-to-liquid ratios caused increased necrosis levels. Tri-lineage differentiation potential into adipocytes, chondrocytes, and osteoblasts was not negatively influenced by aerosolization. Thus, the effervescent aerosolization principle was proven suitable for cell applications requiring reduced amounts of supplied air. This is the first time an effervescent atomizer was used for cell processing. KW - tri-lineage differentiation KW - survival KW - twin-fluid atomizer KW - adipose-derived stromal cells (ASCs) KW - cell atomization KW - cell aerosolization Y1 - 2022 U6 - http://dx.doi.org/10.3390/pharmaceutics14112421 N1 - This article belongs to the Special Issue "Stromal, Stem, Signaling Cells: The Multiple Roles and Applications of Mesenchymal Cells" VL - 14 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Tran, Ngoc Trinh A1 - Trinh, Tu Luc A1 - Dao, Ngoc Tien A1 - Giap, Van Tan A1 - Truong, Manh Khuyen A1 - Dinh, Thuy Ha A1 - Staat, Manfred T1 - FEM shakedown analysis of structures under random strength with chance constrained programming JF - Vietnam Journal of Mechanics N2 - Direct methods, comprising limit and shakedown analysis, are a branch of computational mechanics. They play a significant role in mechanical and civil engineering design. The concept of direct methods aims to determine the ultimate load carrying capacity of structures beyond the elastic range. In practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and constraints. If strength and loading are random quantities, the shakedown analysis can be formulated as stochastic programming problem. In this paper, a method called chance constrained programming is presented, which is an effective method of stochastic programming to solve shakedown analysis problems under random conditions of strength. In this study, the loading is deterministic, and the strength is a normally or lognormally distributed variable. KW - limit analysis KW - shakedown analysis KW - chance constrained programming KW - stochastic programming KW - reliability of structures Y1 - 2022 U6 - http://dx.doi.org/10.15625/0866-7136/17943 SN - 0866-7136 SN - 2815-5882 VL - 44 IS - 4 SP - 459 EP - 473 PB - Vietnam Academy of Science and Technology (VAST) ER - TY - JOUR A1 - Werfel, Stanislas A1 - Günthner, Roman A1 - Hapfelmeier, Alexander A1 - Hanssen, Henner A1 - Kotliar, Konstantin A1 - Heemann, Uwe A1 - Schmaderer, Christoph ED - Guzik, Tomasz J. T1 - Identification of cardiovascular high-risk groups from dynamic retinal vessel signals using untargeted machine learning JF - Cardiovascular Research N2 - Dynamic retinal vessel analysis (DVA) provides a non-invasive way to assess microvascular function in patients and potentially to improve predictions of individual cardiovascular (CV) risk. The aim of our study was to use untargeted machine learning on DVA in order to improve CV mortality prediction and identify corresponding response alterations. KW - Machine learning KW - Retinal vessels KW - Microcirculation KW - Haemodialysis KW - Myocardial infarction and cardiac death Y1 - 2022 U6 - http://dx.doi.org/10.1093/cvr/cvab040 SN - 0008-6363 VL - 118 IS - 2 SP - 612 EP - 621 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Lenz, Maximilian A1 - Kahmann, Stephanie Lucina A1 - Behbahani, Mehdi A1 - Pennig, Lenhard A1 - Hackl, Michael A1 - Leschinger, Tim A1 - Müller, Lars Peter A1 - Wegmann, Kilian T1 - Influence of rotator cuff preload on fracture configuration in proximal humerus fractures: a proof of concept for fracture simulation JF - Archives of Orthopaedic and Trauma Surgery N2 - Introduction In regard of surgical training, the reproducible simulation of life-like proximal humerus fractures in human cadaveric specimens is desirable. The aim of the present study was to develop a technique that allows simulation of realistic proximal humerus fractures and to analyse the influence of rotator cuff preload on the generated lesions in regards of fracture configuration. Materials and methods Ten cadaveric specimens (6 left, 4 right) were fractured using a custom-made drop-test bench, in two groups. Five specimens were fractured without rotator cuff preload, while the other five were fractured with the tendons of the rotator cuff preloaded with 2 kg each. The humeral shaft and the shortened scapula were potted. The humerus was positioned at 90° of abduction and 10° of internal rotation to simulate a fall on the elevated arm. In two specimens of each group, the emergence of the fractures was documented with high-speed video imaging. Pre-fracture radiographs were taken to evaluate the deltoid-tuberosity index as a measure of bone density. Post-fracture X-rays and CT scans were performed to define the exact fracture configurations. Neer’s classification was used to analyse the fractures. Results In all ten cadaveric specimens life-like proximal humerus fractures were achieved. Two III-part and three IV-part fractures resulted in each group. The preloading of the rotator cuff muscles had no further influence on the fracture configuration. High-speed videos of the fracture simulation revealed identical fracture mechanisms for both groups. We observed a two-step fracture mechanism, with initial impaction of the head segment against the glenoid followed by fracturing of the head and the tuberosities and then with further impaction of the shaft against the acromion, which lead to separation of the tuberosities. Conclusion A high energetic axial impulse can reliably induce realistic proximal humerus fractures in cadaveric specimens. The preload of the rotator cuff muscles had no influence on initial fracture configuration. Therefore, fracture simulation in the proximal humerus is less elaborate. Using the presented technique, pre-fractured specimens are available for real-life surgical education. KW - Proximal humerus fracture KW - Biomechanical simulation KW - Fracture configuration KW - Fracture simulation KW - Rotator cuff Y1 - 2022 U6 - http://dx.doi.org/10.1007/s00402-022-04471-9 SN - 1434-3916 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Hein, Andreas M. A1 - Eubanks, T. Marshall A1 - Lingam, Manasvi A1 - Hibberd, Adam A1 - Fries, Dan A1 - Schneider, Jean A1 - Kervella, Pierre A1 - Kennedy, Robert A1 - Perakis, Nikolaos A1 - Dachwald, Bernd T1 - Interstellar now! Missions to explore nearby interstellar objects JF - Advances in Space Research N2 - The recently discovered first hyperbolic objects passing through the Solar System, 1I/’Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system. KW - Interstellar objects KW - Trajectories KW - Missions Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.asr.2021.06.052 SN - 0273-1177 VL - 69 IS - 1 SP - 402 EP - 414 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bhattarai, Aroj A1 - May, Charlotte Anabell A1 - Staat, Manfred A1 - Kowalczyk, Wojciech A1 - Tran, Thanh Ngoc T1 - Layer-specific damage modeling of porcine large intestine under biaxial tension JF - Bioengineering N2 - The mechanical behavior of the large intestine beyond the ultimate stress has never been investigated. Stretching beyond the ultimate stress may drastically impair the tissue microstructure, which consequently weakens its healthy state functions of absorption, temporary storage, and transportation for defecation. Due to closely similar microstructure and function with humans, biaxial tensile experiments on the porcine large intestine have been performed in this study. In this paper, we report hyperelastic characterization of the large intestine based on experiments in 102 specimens. We also report the theoretical analysis of the experimental results, including an exponential damage evolution function. The fracture energies and the threshold stresses are set as damage material parameters for the longitudinal muscular, the circumferential muscular and the submucosal collagenous layers. A biaxial tensile simulation of a linear brick element has been performed to validate the applicability of the estimated material parameters. The model successfully simulates the biomechanical response of the large intestine under physiological and non-physiological loads. KW - biaxial tensile experiment KW - anisotropy KW - hyperelastic KW - constitutive modeling KW - damage Y1 - 2022 U6 - http://dx.doi.org/10.3390/bioengineering9100528 SN - 2306-5354 N1 - Der Artikel gehört zum Sonderheft "Computational Biomechanics" VL - 9 IS - 10, Early Access SP - 1 EP - 17 PB - MDPI CY - Basel ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Trinh, Tu Luc A1 - Dao, Ngoc Tien A1 - Giap, Van Tan A1 - Truong, Manh Khuyen A1 - Dinh, Thuy Ha A1 - Staat, Manfred T1 - Limit and shakedown analysis of structures under random strength T2 - Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022 N2 - Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables. KW - Reliability of structures KW - Stochastic programming KW - Chance constrained programming KW - Shakedown analysis KW - Limit analysis Y1 - 2022 SN - 978-604-357-084-7 SP - 510 EP - 518 PB - Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik) CY - Hanoi ER - TY - JOUR A1 - Chloé, Radermacher A1 - Malyaran, Hanna A1 - Craveiro, Rogerio Bastos A1 - Peglow, Sarah A1 - Behbahani, Mehdi A1 - Pufe, Thomas A1 - Wolf, Michael A1 - Neuss, Sabine T1 - Mechanical loading on cementoblasts: a mini review JF - Osteologie N2 - Orthodontic treatments are concomitant with mechanical forces and thereby cause teeth movements. The applied forces are transmitted to the tooth root and the periodontal ligaments which is compressed on one side and tensed up on the other side. Indeed, strong forces can lead to tooth root resorption and the crown-to-tooth ratio is reduced with the potential for significant clinical impact. The cementum, which covers the tooth root, is a thin mineralized tissue of the periodontium that connects the periodontal ligament with the tooth and is build up by cementoblasts. The impact of tension and compression on these cells is investigated in several in vivo and in vitro studies demonstrating differences in protein expression and signaling pathways. In summary, osteogenic marker changes indicate that cyclic tensile forces support whereas static tension inhibits cementogenesis. Furthermore, cementogenesis experiences the same protein expression changes in static conditions as static tension, but cyclic compression leads to the exact opposite of cyclic tension. Consistent with marker expression changes, the singaling pathways of Wnt/ß-catenin and RANKL/OPG show that tissue compression leads to cementum degradation and tension forces to cementogenesis. However, the cementum, and in particular its cementoblasts, remain a research area which should be explored in more detail to understand the underlying mechanism of bone resorption and remodeling after orthodontic treatments. KW - Cementoblast KW - Compression KW - Tension KW - Mechanotransduction KW - Forces Y1 - 2022 U6 - http://dx.doi.org/10.1055/a-1826-0777 SN - 1019-1291 VL - 31 IS - 2 SP - 111 EP - 118 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Herssens, Nolan A1 - Cowburn, James A1 - Albracht, Kirsten A1 - Braunstein, Bjoern A1 - Cazzola, Dario A1 - Colyer, Steffi A1 - Minetti, Alberto E. A1 - Pavei, Gaspare A1 - Rittweger, Jörn A1 - Weber, Tobias A1 - Green, David A. ED - Cattaneo, Luigi T1 - Movement in low gravity environments (MoLo) programme – the MoLo-L.O.O.P. study protocol JF - PLOS ONE / Public Library of Science N2 - Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g., ground reaction forces) and internal (e.g., joint reaction forces) loads of relevant movements performed during Lunar missions. Such knowledge is key to predict musculoskeletal deconditioning and determine appropriate exercise countermeasures associated with extended exposure to hypogravity. Y1 - 2022 U6 - http://dx.doi.org/10.1371/journal.pone.0278051 SN - 1932-6203 VL - 17 IS - 11 PB - Plos CY - San Francisco ER - TY - CHAP A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Razzaque, Mohammed S. T1 - Role of vitamins in maintaining structure and function of intestinal microbiome T2 - Comprehensive Gut Microbiota N2 - The recent advances in microbiology have shed light on understanding the role of vitamins beyond the nutritional range. Vitamins are critical in contributing to healthy biodiversity and maintaining the proper function of gut microbiota. The sharing of vitamins among bacterial populations promotes stability in community composition and diversity; however, this balance becomes disturbed in various pathologies. Here, we overview and analyze the ability of different vitamins to selectively and specifically induce changes in the intestinal microbial community. Some schemes and regularities become visible, which may provide new insights and avenues for therapeutic management and functional optimization of the gut microbiota. KW - Vitamin A KW - Vitamin B KW - Thiamine KW - Riboflavin KW - Niacin Y1 - 2022 SN - 978-0-12-822036-8 U6 - http://dx.doi.org/10.1016/B978-0-12-819265-8.00043-7 SP - 320 EP - 334 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Staat, Manfred A1 - Tran, Ngoc Trinh T1 - Strain based brittle failure criteria for rocks T2 - Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training, Hanoi, December 2-3, 2022 N2 - When confining pressure is low or absent, extensional fractures are typical, with fractures occurring on unloaded planes in rock. These “paradox” fractures can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. But this criterion makes unrealistic strength predictions in biaxial compression and tension. A new extension strain criterion overcomes this limitation by adding a weighted principal shear component. The weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting failure modes, which are unexpected in the understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak P. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion. KW - Extension fracture KW - Extension strain criterion KW - Mohr–Coulomb criterion KW - Evolution of damage Y1 - 2023 SN - 978-604-357-084-7 SP - 500 EP - 509 PB - Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik) CY - Hanoi ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Horbach, Andreas A1 - Staat, Manfred A1 - Kowalczyk, Wojciech A1 - Tran, Thanh Ngoc T1 - Virgin passive colon biomechanics and a literature review of active contraction constitutive models JF - Biomechanics N2 - The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel–Gasser–Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill’s three-element model, Murphy’s four-state cross-bridge chemical kinetic model and Huxley’s sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine. KW - virgin passive KW - strain energy function KW - smooth muscle contraction KW - viscoelasticity KW - damage Y1 - 2022 U6 - http://dx.doi.org/10.3390/biomechanics2020013 SN - 2673-7078 VL - 2 IS - 2 SP - 138 EP - 157 PB - MDPI CY - Basel ER - TY - CHAP A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Sherelkhan, Dinara K. A1 - Razzaque, Mohammed S. T1 - Vitamin D and Phosphate Interactions in Health and Disease T2 - Phosphate Metabolism N2 - Vitamin D plays an essential role in calcium and inorganic phosphate (Pi) homeostasis, maintaining their optimal levels to assure adequate bone mineralization. Vitamin D, as calcitriol (1,25(OH)2D), not only increases intestinal calcium and phosphate absorption but also facilitates their renal reabsorption, leading to elevated serum calcium and phosphate levels. The interaction of 1,25(OH)2D with its receptor (VDR) increases the efficiency of intestinal absorption of calcium to 30–40% and phosphate to nearly 80%. Serum phosphate levels can also influence 1,25 (OH)2D and fibroblast growth factor 23 (FGF23) levels, i.e., higher phosphate concentrations suppress vitamin D activation and stimulate parathyroid hormone (PTH) release, while a high FGF23 serum level leads to reduced vitamin D synthesis. In the vitamin D-deficient state, the intestinal calcium absorption decreases and the secretion of PTH increases, which in turn causes the stimulation of 1,25(OH)2D production, resulting in excessive urinary phosphate loss. Maintenance of phosphate homeostasis is essential as hyperphosphatemia is a risk factor of cardiovascular calcification, chronic kidney diseases (CKD), and premature aging, while hypophosphatemia is usually associated with rickets and osteomalacia. This chapter elaborates on the possible interactions between vitamin D and phosphate in health and disease. KW - Vitamin D KW - PTH KW - Phosphate KW - FGF23 KW - Klotho Y1 - 2022 SN - 978-3-030-91621-3 U6 - http://dx.doi.org/10.1007/978-3-030-91623-7_5 SP - 37 EP - 46 PB - Springer CY - Cham ER -