TY - JOUR A1 - Schopp, Christoph A1 - Doll, Timo A1 - Gräser, Ulrich A1 - Harzheim, Thomas A1 - Heuermann, Holger A1 - Kling, Rainer A1 - Marso, Michael T1 - Capacitively Coupled High-Pressure Lamp Using Coaxial Line Networks JF - IEEE Transactions on Microwave Theory and Techniques N2 - This paper describes the development of a capacitively coupled high-pressure lamp with input power between 20 and 43 W at 2.45 GHz, using a coaxial line network. Compared with other electrodeless lamp systems, no cavity has to be used and a reduction in the input power is achieved. Therefore, this lamp is an alternative to the halogen incandescent lamp for domestic lighting. To serve the demands of domestic lighting, the filling of the lamp is optimized over all other resulting requirements, such as high efficacy at low induced powers and fast startups. A workflow to develop RF-driven plasma applications is presented, which makes use of the hot S-parameter technique. Descriptions of the fitting process inside a circuit and FEM simulator are given. Results of the combined ignition and operation network from simulations and measurements are compared. An initial prototype is built and measurements of the lamp's lighting properties are presented along with an investigation of the efficacy optimizations using large signal amplitude modulation. With this lamp, an efficacy of 135 lmW -1 is achieved. Y1 - 2016 U6 - http://dx.doi.org/10.1109/TMTT.2016.2600326 SN - 0018-9480 VL - 64 IS - 10 SP - 3363 EP - 3368 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Pilas, Johanna A1 - Yazici, Yasemen A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, d- and l-lactate JF - Electrochimica Acta N2 - The immobilization of NAD+-dependent dehydrogenases, in combination with a diaphorase, enables the facile development of multiparametric sensing devices. In this work, an amperometric biosensor array for simultaneous determination of ethanol, formate, d- and l-lactate is presented. Enzyme immobilization on platinum thin-film electrodes was realized by chemical cross-linking with glutaraldehyde. The optimization of the sensor performance was investigated with regard to enzyme loading, glutaraldehyde concentration, pH, cofactor concentration and temperature. Under optimal working conditions (potassium phosphate buffer with pH 7.5, 2.5 mmol L-1 NAD+, 2.0 mmol L-1 ferricyanide, 25 °C and 0.4% glutaraldehyde) the linear working range and sensitivity of the four sensor elements was improved. Simultaneous and cross-talk free measurements of four different metabolic parameters were performed successfully. The reliable analytical performance of the biosensor array was demonstrated by application in a clarified sample of inoculum sludge. Thereby, a promising approach for on-site monitoring of fermentation processes is provided. KW - Simultaneous determination KW - Enzymatic biosensor KW - Diaphorase KW - Dehydrogenase Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.electacta.2017.07.119 SN - 0013-4686 VL - 251 SP - 256 EP - 262 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Röhlen, Desiree A1 - Pilas, Johanna A1 - Schöning, Michael Josef A1 - Selmer, Thorsten T1 - Development of an amperometric biosensor platform for the combined determination of l-Malic, Fumaric, and l-Aspartic acid JF - Applied Biochemistry and Biotechnology N2 - Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD+) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM−1 (L-malate biosensor) and 0.4 μA mM−1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0–10.0 mM with a sensitivity of 0.09 μA mM−1. The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates. Y1 - 2017 U6 - http://dx.doi.org/10.1007/s12010-017-2578-1 SN - 1559-0291 VL - 183 SP - 566 EP - 581 PB - Springer CY - Berlin ER - TY - JOUR A1 - Honarvarfard, Elham A1 - Gamella, Maria A1 - Poghossian, Arshak A1 - Schöning, Michael Josef A1 - Katz, Evgeny T1 - An enzyme-based reversible Controlled NOT (CNOT) logic gate operating on a semiconductor transducer JF - Applied Materials Today N2 - An enzyme-based biocatalytic system mimicking operation of a logically reversible Controlled NOT (CNOT) gate has been interfaced with semiconductor electronic transducers. Electrolyte–insulator–semiconductor (EIS) structures have been used to transduce chemical changes produced by the enzyme system to an electronically readable capacitive output signal using field-effect features of the EIS device. Two enzymes, urease and esterase, were immobilized on the insulating interface of EIS structure producing local pH changes performing XOR logic operation controlled by various combinations of the input signals represented by urea and ethyl butyrate. Another EIS transducer was functionalized with esterase only, thus performing Identity (ID) logic operation for the ethyl butyrate input. Both semiconductor devices assembled in parallel operated as a logically reversible CNOT gate. The present system, despite its simplicity, demonstrated for the first time logically reversible function of the enzyme system transduced electronically with the semiconductor devices. The biomolecular realization of a CNOT gate interfaced with semiconductors is promising for integration into complex biomolecular networks and future biosensor/biomedical applications. KW - Electrolyte–insulator–semiconductor KW - Capacitive field-effect KW - CNOT KW - XOR KW - Enzyme logic gate Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.apmt.2017.08.003 SN - 2352-9407 VL - 9 SP - 266 EP - 270 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Lambers, Andreas A1 - Bragard, Michael T1 - Kinetische Skulptur - Treffen sich ein E-Techniker und ein Künstler ... JF - Elektor : learn, design, share N2 - Die Verbindung der Welten dressierter Elektronen und grenzenloser Kreativität bietet ein großes Potential; zum Beispiel bei modernen Skulpturen, deren Form sich durch Motoren verändern kann. An der FH Aachen wurde ein solches Projekt verwirklicht: Eine Matrix aus Holzkugeln kann Piktogramme anzeigen, aber auch mathematische Funktionen visualisieren. In diesem Artikel beschreiben wir die clevere Ansteuerung der Motoren. Y1 - 2017 SN - 0932-5468 VL - 48 IS - 9 SP - 78 EP - 83 PB - Elektor-Verlag CY - Aachen ER - TY - JOUR A1 - Tran, Linda A1 - Mottaghy, K. A1 - Arlt-Körfer, Sabine A1 - Waluga, Christian A1 - Behbahani, Mehdi T1 - An experimental study of shear-dependent human platelet adhesion and underlying protein-binding mechanisms in a cylindrical Couette system JF - Biomedizinische Technik Y1 - 2017 U6 - http://dx.doi.org/10.1515/bmt-2015-0034 SN - 0013-5585 VL - 62 IS - 4 SP - 383 EP - 392 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Scholl, Fabio A1 - Morais, Paulo A1 - Gabriel, Rayla A1 - Schöning, Michael Josef A1 - Siqueira, Jose Roberto, Jr. A1 - Caseli, Luciano T1 - Carbon nanotubes arranged as smart interfaces in lipid Langmuir-Blodgett films enhancing the enzymatic properties of penicillinase for biosensing applications JF - Applied Materials & Interfaces N2 - In this paper, carbon nanotubes (CNTs) were incorporated in penicillinase-phospholipid Langmuir and Langmuir–Blodgett (LB) films to enhance the enzyme catalytic properties. Adsorption of the penicillinase and CNTs at dimyristoylphosphatidic acid (DMPA) monolayers at the air–water interface was investigated by surface pressure–area isotherms, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to solid supports through the LB technique, forming mixed DMPA-CNTs-PEN films, which were investigated by quartz crystal microbalance, vibrational spectroscopy, and atomic force microscopy. Enzyme activity was studied with UV–vis spectroscopy and the feasibility of the supramolecular device nanostructured as ultrathin films were essayed in a capacitive electrolyte–insulator–semiconductor (EIS) sensor device. The presence of CNTs in the enzyme–lipid LB film not only tuned the catalytic activity of penicillinase but also helped conserve its enzyme activity after weeks, showing increased values of activity. Viability as penicillin sensor was demonstrated with capacitance/voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results may be related not only to the nanostructured system provided by the film, but also to the synergism between the compounds on the active layer, leading to a surface morphology that allowed a fast analyte diffusion because of an adequate molecular accommodation, which also preserved the penicillinase activity. This work therefore demonstrates the feasibility of employing LB films composed of lipids, CNTs, and enzymes as EIS devices for biosensing applications. Y1 - 2017 U6 - http://dx.doi.org/10.1021/acsami.7b08095 SN - 1944-8252 VL - 9 IS - 36 SP - 31054 EP - 31066 PB - ACS CY - Washington ER - TY - JOUR A1 - Werner, Frederik A1 - Miyamoto, Ko-ichiro A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - Lateral resolution enhancement of pulse-driven light-addressable potentiometric sensor JF - Sensor and Actuators B: Chemical N2 - To study chemical and biological processes, spatially resolved determination of the concentrations of one or more analyte species is of distinct interest. With a light-addressable potentiometric sensor (LAPS), chemical images can be created, which visualize the concentration distribution above the sensor plate. One important challenge is to achieve a good lateral resolution in order to detect events that take place in a small and limited region. LAPS utilizes a focused light spot to address the measurement region. By moving this light spot along the semiconductor sensor plate, the concentration distribution can be observed. In this study, we show that utilizing a pulse as light excitation instead of a traditionally used continuously modulated light excitation, the lateral resolution can be improved by a factor of 6 or more. KW - Chemical images KW - LAPS KW - Light-addressable potentiometric sensor Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.02.057 SN - 0925-4005 VL - 248 SP - 961 EP - 965 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Miyamoto, Ko-ichiro A1 - Hayashi, Kosuke A1 - Sakamoto, Azuma A1 - Werner, Frederik A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Yoshinobu, Tatsuo T1 - A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance JF - Sensor and Actuators B: Chemical N2 - An EIS capacitive sensor is a semiconductor-based potentiometric sensor, which is sensitive to the ion concentration or pH value of the solution in contact with the sensing surface. To detect a small change in the ion concentration or pH, a small capacitance change must be detected. Recently, a resonance-mode measurement was proposed, in which an inductor was connected to the EIS capacitive sensor and the resonant frequency was correlated with the pH value. In this study, the Q factor of the resonant circuit was enhanced by canceling the internal resistance of the reference electrode and the internal resistance of the inductor coil with the help of a bypass capacitor and a negative impedance converter, respectively. 1% variation of the signal in the developed system corresponded to a pH change of 3.93 mpH, which was about 1/12 of the conventional method, suggesting a better performance in detection of a small pH change. KW - Negative impedance convertor KW - Resonance-mode measurement KW - Chemical sensor KW - EIS capacitive sensor Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.snb.2017.03.002 SN - 0925-4005 VL - 248 SP - 1006 EP - 1010 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Effect of O2 plasma on properties of electrolyte-insulator-semiconductor structures JF - physica status solidi a : applications and materials sciences N2 - Prior to immobilization of biomolecules or cells onto biosensor surfaces, the surface must be physically or chemically activated for further functionalization. Organosilanes are a versatile option as they facilitate the immobilization through their terminal groups and also display self-assembly. Incorporating hydroxyl groups is one of the important methods for primary immobilization. This can be done, for example, with oxygen plasma treatment. However, this treatment can affect the performance of the biosensors and this effect is not quite well understood for surface functionalization. In this work, the effect of O2 plasma treatment on EIS sensors was investigated by means of electrochemical characterizations: capacitance–voltage (C–V) and constant capacitance (ConCap) measurements. After O2 plasma treatment, the potential of the EIS sensor dramatically shifts to a more negative value. This was successfully reset by using an annealing process. KW - surface functionalization KW - O2 plasma KW - hydroxylation KW - electrolyte-insulator semiconductor sensor (EIS) KW - annealing Y1 - 2017 U6 - http://dx.doi.org/10.1002/pssa.201700025 SN - 1862-6319 VL - 214 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Molinnus, Denise A1 - Poghossian, Arshak A1 - Keusgen, Michael A1 - Katz, Evgeny A1 - Schöning, Michael Josef T1 - Coupling of Biomolecular Logic Gates with Electronic Transducers: From Single Enzyme Logic Gates to Sense/Act/Treat Chips JF - Electroanalysis N2 - The integration of biomolecular logic principles with electronic transducers allows designing novel digital biosensors with direct electrical output, logically triggered drug-release, and closed-loop sense/act/treat systems. This opens new opportunities for advanced personalized medicine in the context of theranostics. In the present work, we will discuss selected examples of recent developments in the field of interfacing enzyme logic gates with electrodes and semiconductor field-effect devices. Special attention is given to an enzyme OR/Reset logic gate based on a capacitive field-effect electrolyte-insulator-semiconductor sensor modified with a multi-enzyme membrane. Further examples are a digital adrenaline biosensor based on an AND logic gate with binary YES/NO output and an integrated closed-loop sense/act/treat system comprising an amperometric glucose sensor, a hydrogel actuator, and an insulin (drug) sensor. Y1 - 2017 U6 - http://dx.doi.org/10.1002/elan.201700208 SN - 1521-4109 VL - 29 IS - 8 SP - 1840 EP - 1849 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Jildeh, Zaid B. A1 - Kirchner, Patrick A1 - Oberländer, Jan A1 - Kremers, Alexander A1 - Wagner, Torsten A1 - Wagner, Patrick H. A1 - Schöning, Michael Josef T1 - FEM-based modeling of a calorimetric gas sensor for hydrogen peroxide monitoring JF - physica status solidi a : applications and materials sciences N2 - A physically coupled finite element method (FEM) model is developed to study the response behavior of a calorimetric gas sensor. The modeled sensor serves as a monitoring device of the concentration of gaseous hydrogen peroxide (H2 O2) in a high temperature mixture stream in aseptic sterilization processes. The principle of operation of a calorimetric H2 O2 sensor is analyzed and the results of the numerical model have been validated by using previously published sensor experiments. The deviation in the results between the FEM model and experimental data are presented and discussed. Y1 - 2017 U6 - http://dx.doi.org/10.1002/pssa.201600912 SN - 1862-6319 IS - Early View PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Dantism, Shahriar A1 - Takenaga, Shoko A1 - Wagner, Torsten A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Differential imaging of the metabolism of bacteria and eukaryotic cells based on light-addressable potentiometric sensors JF - Electrochimica Acta N2 - A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric sensor with an electrolyte/insulator/semiconductor (EIS) structure, which is able to monitor analyte concentrations of (bio-)chemical species in aqueous solutions in a spatially resolved way. Therefore, it is also an appropriate tool to record 2D-chemical images of concentration variations on the sensor surface. In the present work, two differential, LAPS-based measurement principles are introduced to determine the metabolic activity of Escherichia coli (E. coli) K12 and Chinese hamster ovary (CHO) cells as test microorganisms. Hereby, we focus on i) the determination of the extracellular acidification rate (ΔpH/min) after adding glucose solutions to the cell suspensions; and ii) recording the amplitude increase of the photocurrent (Iph) related to the produced acids from E. coli K12 bacteria and CHO cells on the sensor surface by 2D-chemical imaging. For this purpose, 3D-printed multi-chamber structures were developed and mounted on the planar sensor-chip surface to define four independent compartments, enabling differential measurements with varying cell concentrations. The differential concept allows eliminating unwanted drift effects and, with the four-chamber structures, measurements on the different cell concentrations were performed simultaneously, thus reducing also the overall measuring time. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.electacta.2017.05.196 SN - 0013-4686 VL - 246 SP - 234 EP - 241 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Morais, Paulo V. A1 - Gomes, Vanderley F., Jr. A1 - Silva, Anielle C. A. A1 - Dantas, Noelio O. A1 - Schöning, Michael Josef A1 - Siqueira, José R., Jr. T1 - Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices JF - Journal of Materials Science N2 - The incorporation of nanomaterials that are biocompatible with different types of biological compounds has allowed the development of a new generation of biosensors applied especially in the biomedical field. In particular, the integration of film-based nanomaterials employed in field-effect devices can be interesting to develop biosensors with enhanced properties. In this paper, we studied the fabrication of sensitive nanofilms combining ZnO nanocrystals and carbon nanotubes (CNTs), prepared by means of the layer-by-layer (LbL) technique, in a capacitive electrolyte-insulator-semiconductor (EIS) structure for detecting glucose and urea. The ZnO nanocrystals were incorporated in a polymeric matrix of poly(allylamine) hydrochloride (PAH), and arranged with multi-walled CNTs in a LbL PAH-ZnO/CNTs film architecture onto EIS chips. The electrochemical characterizations were performed by capacitance–voltage and constant capacitance measurements, while the morphology of the films was characterized by atomic force microscopy. The enzymes glucose oxidase and urease were immobilized on film’s surface for detection of glucose and urea, respectively. In order to obtain glucose and urea biosensors with optimized amount of sensitive films, we investigated the ideal number of bilayers for each detection system. The glucose biosensor showed better sensitivity and output signal for an LbL PAH-ZnO/CNTs nanofilm with 10 bilayers. On the other hand, the urea biosensor presented enhanced properties even for the first bilayer, exhibiting high sensitivity and output signal. The presence of the LbL PAH-ZnO/CNTs films led to biosensors with better sensitivity and enhanced response signal, demonstrating that the adequate use of nanostructured films is feasible for proof-of-concept biosensors with improved properties that may be employed for biomedical applications. Y1 - 2017 U6 - http://dx.doi.org/10.1007/s10853-017-1369-y SN - 1573-4803 VL - 52 IS - 20 SP - 12314 EP - 12325 PB - Springer CY - Berlin ER - TY - JOUR A1 - Figueroa-Miranda, Gabriela A1 - Feng, Lingyan A1 - Shiu, Simon Chi-Chin A1 - Dirkzwager, Roderick Marshall A1 - Cheung, Yee-Wai A1 - Tanner, Julian Alexander A1 - Schöning, Michael Josef A1 - Offenhäusser, Andreas A1 - Mayer, Dirk T1 - Aptamer-based electrochemical biosensor for highly sensitive and selective malaria detection with adjustable dynamic response range and reusability JF - Sensor and Actuators B: Chemical N2 - Malaria infection remains a significant risk for much of the population of tropical and subtropical areas, particularly in developing countries. Therefore, it is of high importance to develop sensitive, accurate and inexpensive malaria diagnosis tests. Here, we present a novel aptamer-based electrochemical biosensor (aptasensor) for malaria detection by impedance spectroscopy, through the specific recognition between a highly discriminatory DNA aptamer and its target Plasmodium falciparum lactate dehydrogenase (PfLDH). Interestingly, due to the isoelectric point (pI) of PfLDH, the aptasensor response showed an adjustable detection range based on the different protein net-charge at variable pH environments. The specific aptamer recognition allows sensitive protein detection with an expanded detection range and a low detection limit, as well as a high specificity for PfLDH compared to analogous proteins. The specific feasibility of the aptasensor is further demonstrated by detection of the target PfLDH in human serum. Furthermore, the aptasensor can be easily regenerated and thus applied for multiple usages. The robustness, sensitivity, and reusability of the presented aptasensor make it a promising candidate for point-of-care diagnostic systems. Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.snb.2017.07.117 SN - 0925-4005 VL - 255 IS - P1 SP - 235 EP - 243 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Muschallik, Lukas A1 - Molinnus, Denise A1 - Bongaerts, Johannes A1 - Pohl, Martina A1 - Wagner, Torsten A1 - Schöning, Michael Josef A1 - Siegert, Petra A1 - Selmer, Thorsten T1 - (R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme JF - Journal of Biotechnology N2 - The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33–43%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development. Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.jbiotec.2017.07.020 SN - 0168-1656 VL - 258 SP - 41 EP - 50 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tippkötter, Nils A1 - Duwe, Anna-Maria A1 - Wiesen, Sebastian A1 - Sieker, Tim A1 - Ulber, Roland T1 - Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids JF - Bioresource Technology N2 - The development of a cost-effective hydrolysis for crude cellulose is an essential part of biorefinery developments. To establish such high solid hydrolysis, a new solid state reactor with static mixing is used. However, concentrations >10% (w/w) cause a rate and yield reduction of enzymatic hydrolysis. By optimizing the synergetic activity of cellulolytic enzymes at solid concentrations of 9%, 17% and 23% (w/w) of crude Organosolv cellulose, glucose concentrations of 57, 113 and 152 g L⁻¹ are reached. However, the glucose yield decreases from 0.81 to 0.72gg⁻¹ at 17% (w/w). Optimal conditions for hydrolysis scale-up under minimal enzyme addition are identified. As result, at 23% (w/w) crude cellulose the glucose yield increases from 0.29 to 0.49gg⁻¹. As proof of its applicability, biobutanol, succinic and itaconic acid are produced with the crude hydrolysate. The potential of the substrate is proven e.g. by a high butanol yield of 0.33gg⁻¹. Y1 - 2014 U6 - http://dx.doi.org/10.1016/j.biortech.2014.06.052 VL - 167 SP - 447 EP - 455 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wiesen, Sebastian A1 - Tippkötter, Nils A1 - Muffler, Kai A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Ruf, Friedrich A1 - Ulber, Roland T1 - Adsorption of fatty acids to layered double hydroxides in aqueous systems JF - Adsorption N2 - Due to their anion exchange characteristics, layered double hydroxides (LDHs) are suitable for the detoxification of aqueous, fatty acid containing fermentation substrates. The aim of this study is to examine the adsorption mechanism, using crude glycerol from plant oil esterification as a model system. Changes in the intercalation structure in relation to the amount of fatty acids adsorbed are monitored by X-ray diffraction and infra-red spectroscopy. Additionally, calcination of LDH is investigated in order to increase the binding capacity for fatty acids. Our data propose that, at ambient temperature, fatty acids can be bound to the hydrotalcite by adsorption or in addition by intercalation, depending on fatty acid concentration. The adsorption of fatty acids from crude glycerol shows a BET-like behavior. Above a fatty acid concentration of 3.5 g L−1, intercalation of fatty acids can be shown by the appearance of an increased interlayer spacing. This observation suggests a two phase adsorption process. Calcination of LDHs allows increasing the binding capacity for fatty acids by more than six times, mainly by reduction of structural CO32−. Y1 - 2015 VL - 21 IS - 6-7 SP - 459 EP - 466 PB - Springer CY - Berlin ER - TY - JOUR A1 - Wulfhorst, Helene A1 - Duwe, Anna-Maria A1 - Merseburg, Johannes A1 - Tippkötter, Nils T1 - Compositional analysis of pretreated (beech) wood using differential scanning calorimetry and multivariate data analysis JF - Tetrahedron N2 - The composition of plant biomass varies depending on the feedstock and pre-treatment conditions and influences its processing in biorefineries. In order to ensure optimal process conditions, the quantitative proportion of the main polymeric components of the pre-treated biomass has to be determined. Current standard procedures for biomass compositional analysis are complex, the measurements are afflicted with errors and therefore often not comparable. Hence, new powerful analytical methods are urgently required to characterize biomass. In this contribution, Differential Scanning Calorimetry (DSC) was applied in combination with multivariate data analysis (MVA) to detect the cellulose content of the plant biomass pretreated by Liquid Hot Water (LHW) and Organosolv processes under various conditions. Unlike conventional techniques, the developed analytic method enables the accurate quantification of monosaccharide content of the plant biomass without any previous sample preparation. It is easy to handle and avoids errors in sample preparation. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.tet.2016.04.029 VL - 72 IS - 46 SP - 7329 EP - 7334 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Al-Kaidy, Huschyar A1 - Kuthan, Kai A1 - Hering, Thomas A1 - Tippkötter, Nils T1 - Aqueous droplets used as enzymatic microreactors and their electromagnetic actuation JF - Journal of Visualized Experiments N2 - For the successful implementation of microfluidic reaction systems, such as PCR and electrophoresis, the movement of small liquid volumes is essential. In conventional lab-on-a-chip-platforms, solvents and samples are passed through defined microfluidic channels with complex flow control installations. The droplet actuation platform presented here is a promising alternative. With it, it is possible to move a liquid drop (microreactor) on a planar surface of a reaction platform (lab-in-a-drop). The actuation of microreactors on the hydrophobic surface of the platform is based on the use of magnetic forces acting on the outer shell of the liquid drops which is made of a thin layer of superhydrophobic magnetite particles. The hydrophobic surface of the platform is needed to avoid any contact between the liquid core and the surface to allow a smooth movement of the microreactor. On the platform, one or more microreactors with volumes of 10 µL can be positioned and moved simultaneously. The platform itself consists of a 3 x 3 matrix of electrical double coils which accommodate either neodymium or iron cores. The magnetic field gradients are automatically controlled. By variation of the magnetic field gradients, the microreactors' magnetic hydrophobic shell can be manipulated automatically to move the microreactor or open the shell reversibly. Reactions of substrates and corresponding enzymes can be initiated by merging the microreactors or bringing them into contact with surface immobilized catalysts. Y1 - 2016 U6 - http://dx.doi.org/10.3791/54643 SN - 1940-087X IS - Issue 126 ER - TY - JOUR A1 - Sieker, Tim A1 - Ulber, Roland A1 - Dimitrova, Darina A1 - Bart, Hans-Jörg A1 - Neuner, Andreas A1 - Heinzle, Elmar A1 - Tippkötter, Nils T1 - Silage : Fermentationsrohstoff für die chemische Industrie? JF - labor&more N2 - In Anbetracht des zu erwartenden Rückgangs der Verfügbarkeit fossiler Rohstoffe müssen nicht nur für den Energiesektor, sondern auch für die Herstellung industrieller Produkte alternative Rohstoffe gefunden werden. Ein Beispiel für einen nicht in Nahrungsmittelkonkurrenz stehenden nachwachsenden Rohstoff ist grüne Biomasse wie Gras und Klee. Diese lassen sich in Deutschland auf großen Flächen anbauen und enthalten eine Vielzahl potenzieller Substrate für Fermentationen. Y1 - 2009 IS - 2 SP - 44 EP - 45 ER - TY - JOUR A1 - Tippkötter, Nils A1 - Wollny, S. A1 - Kampeis, P. A1 - Oster, J. A1 - Schneider, H. A1 - Ulber, R. T1 - Magnetseparation von Proteinen : Separation von Zielmolekülen durch hochselektive Aptamere JF - GIT Labor-Fachzeitschrift N2 - Durch die Kombination von Oligonukleotid-Liganden (Aptameren) hoher Bindungsaffinitäten mit hochselektiv abtrennbaren magnetisierbaren Mikropartikeln wird eine einstufige Separation von Zielmolekülen aus mikrobiologischen Produktionsansätzen möglich. Die Aptamere werden hierfür reversibel auf den Partikeloberflächen gebunden und für die spezifische Isolierung von Bioprodukten eingesetzt. Die Abtrennung der beladenen Partikel erfolgt durch einen neuen Rotor-Stator-Separator mit Hochgradient-Magnetfeld. Y1 - 2011 VL - 55 IS - 10 SP - 666 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Hebel, Christoph T1 - Erfahrungen mit der RIN und aktuelle Weiterentwicklungen JF - Straßenverkehrstechnik: Organ der Forschungsgesellschaft für Straßen- und Verkehrswesen, der Bundesvereinigung der Straßenbau- und Verkehrsingenieure und der Österreichischen Forschungsgesellschaft Straße und Verkehr; Zeitschrift für Verkehrsplanung, Verkehrsmanagement, Verkehrssicherheit, Verkehrstechnik Y1 - 2017 SN - 0039-2219 N1 - gedruckt in der Bereichsbibliothek Bayernallee vorhanden VL - 61 IS - 7 SP - 443 EP - 448 PB - Kirschbaum-Verlag CY - Bonn ER - TY - JOUR A1 - Kappler-Tanudyaya, Nathalie A1 - Schmitt, Heike A1 - Tippkötter, Nils A1 - Meyer, Lina A1 - Lenzen, Sigurd A1 - Ulber, Roland T1 - Combination of biotransformation and chromatography for the isolation and purification of mannoheptulose JF - Biotechnology Journal N2 - Mannoheptulose is a seven-carbon sugar. It is an inhibitor of glucose-induced insulin secretion due to its ability to selectively inhibit the enzyme glucokinase. An improved procedure for mannoheptulose isolation from avocados is described in this study (based upon the original method by La Forge). The study focuses on the combination of biotransformation and downstream processing (preparative chromatography) as an efficient method to produce a pure extract of mannoheptulose. The experiments were divided into two major phases. In the first phase, several methods and parameters were compared to optimize the mannoheptulose extraction with respect to efficiency and purity. In the second phase, a mass balance of mannoheptulose over the whole extraction process was undertaken to estimate the yield and efficiency of the total extraction process. The combination of biotransformation and preparative chromatography allowed the production of a pure mannoheptulose extract. In a biological test, the sugar inhibited the glucokinase enzyme activity efficiently. Y1 - 2007 U6 - http://dx.doi.org/10.1002/biot.200700004 SN - 1860-7314 VL - 2 IS - 6 SP - 692 EP - 699 ER - TY - JOUR A1 - Tippkötter, Nils A1 - Deterding, A. A1 - Ulber, Roland T1 - Determination of acetic acid in fermentation broth by gas-diffusion technique JF - Engineering in Life Sciences N2 - Due to the interfering effects of acetic acid in many fermentation processes, a gas-diffusion technique was developed for the online determination of acetic acid. The measurements were accomplished with a flow diffusion analysis (FDA) unit from the TRACE Analytics GmbH, Braunschweig, Germany. The diffusion analysis is based on the UV-absorbance of acetic acid at 205 nm. The measurement was achieved by the separation of an acceptor and a carrier stream (acidified fermentation broth) using a gas permeable polytetrafluoroethylene (PTFE) membrane, whereby broth constituents that would otherwise disturb the UV-measurement of acetic acid, are held back efficiently. Merely, the fermentation by-products, e.g. formic acid, is capable of diffusing through the membrane. While formic acid can disturb the measurement, carbon dioxide does not absorb at 205 nm. The method operates with time-dependent sample enrichment. During the analysis, a small volume of the acceptor stream is stopped for a defined time interval in the acceptor chamber. During this period, the gaseous acetic acid diffuses through the membrane and is enriched in the acceptor chamber. Subsequently after the enrichment, the acceptor stream flows through a UV-detector. The intensity of the signal is proportional to the acetic acid concentration. Online measurements in bioreactors via a sterile filtration probe have been accomplished. A linear calibration in the range of 0.5–5.0 g/L acetic acid with a relative standard deviation of <5 % was obtained. A sampling rate of 8 samples per hour was possible. The system was applied for the determination of acetic acid in E. coli fermentation broth. The instrument is easy to clean, very user-friendly and does not require any toxic or expensive reagents. Y1 - 2008 U6 - http://dx.doi.org/10.1002/elsc.200820227 VL - 8 IS - 1, Special Issue: Technical Systems for the Use in Life Sciences SP - 62 EP - 67 ER - TY - JOUR A1 - Graf, Alain-Michel A1 - Steinhof, Rafael A1 - Lotz, Martin A1 - Tippkötter, Nils A1 - Kasper, Cornelia A1 - Beutel, Sascha A1 - Ulber, Roland T1 - Downstream-Processing mit Membranadsorbern zur Isolierung nativer Proteinfraktionen aus Kartoffelfruchtwasser JF - Chemie Ingenieur Technik N2 - Bei der Stärkeproduktion entstehendes Kartoffelfruchtwasser besitzt mit 2 – 3 % einen hohen Anteil an ernährungsphysiologisch interessanten Proteinen. Die industrielle Gewinnung dieser Proteinfracht liefert jedoch lediglich ein minderwertiges, denaturiertes Produkt. Mit Hilfe der Membranadsorber-Technologie lassen sich aus Kartoffelfruchtwasser unter milden Reaktionsbedingungen native bioaktive Proteinfraktionen gewinnen. Geeignete Trennbedingungen wurden im Labormaßstab entwickelt und in den Technikumsmaßstab übertragen. An Anionenaustauscher-Membranadsorbern mit einer Membranfläche von 10 000 cm2 wurde eine Patatinhaltige Fraktion (44 kDa) mit Bindungskapazitäten von 0,37 mg/cm2 isoliert. Eine niedermolekulare Proteinfraktion mit Protease-Inhibitoren konnte durch Kationenaustauscher-Membranadsorber mit Bindungskapazitäten von 1,00 mg/cm2 gewonnen werden. Sie ist für verschiedenste Applikationen in der pharmazeutischen, kosmetischen und der Nahrungsmittelindustrie interessant z. B. für Appetitzügler oder muskelaufbauende Proteinpräparate. Der Aufreinigung der nativen Proteinfraktionen durch Ultra-/Diafiltration schließt sich die Konfektionierung durch Sprühtrocknung an. Die bioanalytische Charakterisierung der Produkte belegt die Reinheit und die enzymatische Aktivität sowie die Abreicherung von Störkomponenten wie Glykoalkaloide und Polyphenoloxidasen. Y1 - 2009 U6 - http://dx.doi.org/10.1002/cite.200800139 VL - 81 IS - 3 SP - 267 EP - 274 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Ulber, Roland A1 - Poth, Sebastian A1 - Monzon, Magaly A1 - Tippkötter, Nils T1 - Prozessintegration von Hydrolyse und Fermentation von Cellulose- Faserstoff JF - Chemie Ingenieur Technik N2 - Ein viel versprechender erneuerbarer Rohstoff für die Produktion von Chemikalien und Treibstoffen ist Lignocellulose aus pflanzlicher Biomasse. Die darin enthaltenen Zucker können mittels enzymatischer Hydrolyse freigesetzt und fermentativ zu Ethanol umgesetzt werden. Ein interessanter Ansatz ist dabei die simultane Verzuckerung und Fermentation. Hefen und Enzyme haben mit 30 °C bzw. 50 °C zwar unterschiedliche Temperaturoptima, es konnte aber gezeigt werden, dass auch bei den niedrigeren Temperaturen eine Umsetzung der Cellulose zu Glucose erfolgt, wenn auch langsamer als bei optimalen Bedingungen. Außerdem konnte in Vorversuchen gezeigt werden, dass Ethanol in den zu erwartenden Konzentrationen keinen Einfluss auf die enzymatische Umsetzung hat. Y1 - 2010 U6 - http://dx.doi.org/10.1002/cite.200900103 SN - 1522-2640 N1 - Special Issue "Biokatalyse" VL - 82 IS - 1-2 SP - 135 EP - 139 ER - TY - JOUR A1 - Sieker, Tim A1 - Neuner, Andreas A1 - Dimitrova, Darina A1 - Tippkötter, Nils A1 - Bart, Hans-Jörg A1 - Heinzle, Elmar A1 - Ulber, Roland T1 - Grassilage als Rohstoff für die chemische Industrie JF - Chemie Ingenieur Technik N2 - Grassilage stellt einen nachwachsenden Rohstoff mit großem Potenzial dar. Neben Cellulose und Hemicellulose enthält sie auch organische Säuren, insbesondere Milchsäure. In einem Bioraffinerie-Projekt wird die Milchsäure aus der Silage isoliert und mit gentechnisch optimierten Stämmen zu L-Lysin weiterverarbeitet. Die Lignocellulose wird hydrolysiert und zu Ethanol fermentiert. Ein besonderes Augenmerk liegt auf der Integration der unterschiedlichen Prozesse sowie der einzelnen Prozessschritte zu einem Gesamtprozess, der sämtliche Inhaltsstoffe der Silage verwertet. Y1 - 2010 U6 - http://dx.doi.org/10.1002/cite.201000088 SN - 1522-2640 VL - 82 IS - 8, Special Issue: Industrielle Nutzung nachwachsender Rohstoffe SP - 1153 EP - 1159 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tippkötter, Nils A1 - Roikaew, Wipa A1 - Ulber, Roland A1 - Hoffmann, Alexander A1 - Denzler, Hans-Jörg A1 - Buchholz, Heinrich T1 - Paracoccus denitrificans for the effluent recycling during continuous denitrification of liquid food JF - Biotechnology Progress N2 - Nitrate is an undesirable component of several foods. A typical case of contamination with high nitrate contents is whey concentrate, containing nitrate in concentrations up to 25 l. The microbiological removal of nitrate by Paracoccus denitrificans under formation of harmless nitrogen in combination with a cell retention reactor is described here. Focus lies on the resource-conserving design of a microbal denitrification process. Two methods are compared. The application of polyvinyl alcohol-immobilized cells, which can be applied several times in whey feed, is compared with the implementation of a two step denitrification system. First, the whey concentrate's nitrate is removed by ion exchange and subsequently the eluent regenerated by microorganisms under their retention by crossflow filtration. Nitrite and nitrate concentrations were determined by reflectometric color measurement with a commercially available Reflectoquant® device. Correction factors for these media had to be determined. During the pilot development, bioreactors from 4 to 250 mg·L-1 and crossflow units with membrane areas from 0.02 to 0.80 m2 were examined. Based on the results of the pilot plants, a scaling for the exemplary process of denitrifying 1,000 tons per day is discussed. Y1 - 2010 U6 - http://dx.doi.org/10.1002/btpr.384 SN - 8756-7938 VL - 26 IS - 3 SP - 756 EP - 762 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Poth, Sebastian A1 - Monzon, Magaly A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Lignocellulosic biorefinery: Process integration of hydrolysis and fermentation (SSF process) JF - Holzforschung N2 - The aim of the present work is the process integration and the optimization of the enzymatic hydrolysis of wood and the following fermentation of the products to ethanol. The substrate is a fiber fraction obtained by organosolv pre-treatment of beech wood. For the ethanol production, a co-fermentation by two different yeasts (Saccharomyces cerevisiae and Pachysolen tannophilus) was carried out to convert glucose as well as xylose. Two approaches has been followed: 1. A two step process, in which the hydrolysis of the fiber fraction and the fermentation to product are separated from each other. 2. A process, in which the hydrolysis and the fermentation are carried out in one single process step as simultaneous saccharification and fermentation (SSF). Following the first approach, a yield of about 0.15 g ethanol per gram substrate can be reached. Based on the SSF, one process step can be saved, and additionally, the gained yield can be raised up to 0.3 g ethanol per gram substrate. Y1 - 2011 N1 - 11th EWLP, Hamburg, Germany, August 16–19, 2010 VL - 65 IS - 5 SP - 633 EP - 637 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Sieker, Tim A1 - Neuner, Andreas A1 - Dimitrova, Darina A1 - Tippkötter, Nils A1 - Muffler, Kai A1 - Bart, Hans-Jörg A1 - Heinzle, Elmar A1 - Ulber, Roland T1 - Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: First steps in the process development JF - Engineering in Life Sciences N2 - Grass silage provides a great potential as renewable feedstock. Two fractions of the grass silage, a press juice and the fiber fraction, were evaluated for their possible use for bioethanol production. Direct production of ethanol from press juice is not possible due to high concentrations of organic acids. For the fiber fraction, alkaline peroxide or enzymatic pretreatment was used, which removes the phenolic acids in the cell wall. In this study, we demonstrate the possibility to integrate the enzymatic pretreatment with a simultaneous saccharification and fermentation to achieve ethanol production from grass silage in a one-process step. Achieved yields were about 53 g ethanol per kg silage with the alkaline peroxide pretreatment and 91 g/kg with the enzymatic pretreatment at concentrations of 8.5 and 14.6 g/L, respectively. Furthermore, it was shown that additional supplementation of the fermentation medium with vitamins, trace elements and nutrient salts is not necessary when the press juice is directly used in the fermentation step. Y1 - 2011 U6 - http://dx.doi.org/10.1002/elsc.201000160 N1 - Special Issue "Bioprocess‐oriented plant design" VL - 11 IS - 4 SP - 436 EP - 442 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Tippkötter, Nils A1 - Al-Kaidy, Huschyar A1 - Wollny, Steffen A1 - Ulber, Roland T1 - Functionalized magnetizable particles for downstream processing in single-use systems JF - Chemie Ingenieur Technik N2 - Biotechnological downstream processing is usually an elaborate procedure, requiring a multitude of unit operations to isolate the target component. Besides the disadvantageous space-time yield, the risks of cross-contaminations and product loss grow fast with the complexity of the isolation procedure. A significant reduction of unit operations can be achieved by application of magnetic particles, especially if these are functionalized with affinity ligands. As magnetic susceptible materials are highly uncommon in biotechnological processes, target binding and selective separation of such particles from fermentation or reactions broths can be done in a single step. Since the magnetizable particles can be produced from iron salts and low priced polymers, a single-use implementation of these systems is highly conceivable. In this article, the principles of magnetizable particles, their synthesis and functionalization are explained. Furthermore, applications in the area of reaction engineering, microfluidics and downstream processing are discussed focusing on established single-use technologies and development potential. Y1 - 2013 U6 - http://dx.doi.org/10.1002/cite.201200130 VL - 85 IS - 1-2: Special Issue: Single-Use Technology SP - 76 EP - 86 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Thiel, Alexander A1 - Tippkötter, Nils A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Ruf, Friedrich A1 - Ulber, Roland T1 - New zeolite adsorbents for downstream processing of polyphenols from renewable resources JF - Engineering in Life Sciences N2 - Commercial materials with polyvinylpolypyrrolidone and polymeric amberlites (XAD7HP, XAD16) are commonly used for the adsorptive downstream processing of polyphenols from renewable resources. In this study, beta-zeolite-based adsorbent systems were examined, and their properties were compared to organic resins. Batch adsorption experiments were conducted with synthetic solutions of major polyphenols. Adsorption isotherms and desorption characteristics of individual adsorbent were determined based on these results. Maximum adsorption capacities were calculated using the Langmuir model. For example, the zeolites had capacities up to 203.2 mg/g for ferulic acid. To extend these results to a complex system, additional experiments were performed on rapeseed meal and wheat seed extracts as representative renewable resources. HPLC analysis showed that with 7.5% w/v, which is regarded as the optimum amount of zeolites, zeolites A and B could bind 100% of the major polyphenols as well as release polyphenols at high yields. Additionally, regeneration experiments were performed with isopropyl alcohol at 99°C to evaluate how zeolites regenerate under mild conditions. The results showed only a negligible loss of adsorption capacity and no loss of desorption capacity. In summary, it was concluded that beta-zeolites were promising adsorbents for developing new processes to isolate polyphenols from renewable resources. Y1 - 2013 U6 - http://dx.doi.org/10.1002/elsc.201200188 VL - 13 IS - 3 SP - 239 EP - 246 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Al-Kaidy, Huschyar A1 - Duwe, Anna A1 - Huster, Manuel A1 - Muffler, Kai A1 - Schlegel, Christin A1 - Sieker, Tim A1 - Stadtmüller, Ralf A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Biotechnologie und Bioverfahrenstechnik – Vom ersten Ullmanns Artikel bis hin zu aktuellen Forschungsthemen JF - Chemie Ingenieur Technik N2 - Biotechnologie und die mit ihr verbundenen technischen Prozesse prägen seit Jahrtausenden die Entwicklung der Menschheit. Ausgehend von empirischen Verfahren, insbesondere zur Herstellung von Lebensmitteln und täglichen Gebrauchsgütern, haben sich diese Disziplinen zu einem der innovativsten Zukunftsfelder entwickelt. Durch das immer detailliertere Verständnis zellulärer Vorgänge können mittlerweile Produktionsstämme gezielt optimiert werden. Im Zusammenspiel mit moderner Prozesstechnik können so eine Vielzahl von Bulk- und Feinchemikalien sowie Pharmazeutika effizient hergestellt werden. In diesem Artikel werden exemplarisch einige der aktuellen Trends vorgestellt. Y1 - 2014 U6 - http://dx.doi.org/10.1002/cite.201400083 SN - 0009-286X VL - 86 IS - 12 SP - 2215 EP - 2225 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Wiesen, Sebastian A1 - Tippkötter, Nils A1 - Muffler, Kai A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Ruf, Nils A1 - Ulber, Roland T1 - Adsorptive Vorbehandlung von Rohglycerin für die 1,3-Propandiol Fermentation mit Clostridium diolis JF - Chemie Ingenieur Technik N2 - Bei der Gewinnung von Fettsäuren aus Pflanzenölen, z. B. zur Herstellung von Biopolymeren, oder bei der Biodiesel- und Seifenproduktion, fällt Glycerin als Nebenprodukt an. Bei der Biokonversion dieses Rohstoffes zu 1,3-Propandiol wird der Produktionsorganismus Clostridium diolis durch Verunreinigungen im Rohglycerin gehemmt. Als inhibierende Substanzen konnten freie Fettsäuren identifiziert werden. Mithilfe eines adsorptiven Aufarbeitungsverfahrens ist es gelungen, die Fettsäuren zu entfernen und die Konversionseffizienz zu 1,3-Propandiol zu erhöhen. Y1 - 2014 U6 - http://dx.doi.org/10.1002/cite.201300080 N1 - Englischer Titel: Adsorptive Pretreatment of Crude Glycerol Prior to Fermentation to 1,3-Propanediole by Clostridium Diolis VL - 86 IS - 1-2 SP - 129 EP - 135 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Tippkötter, Nils A1 - Wollny, Steffen A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Ruf, Friedrich A1 - Ulber, Roland T1 - Recycling of spent oil bleaching earth as source of glycerol for the anaerobic production of acetone, butanol, and ethanol with Clostridium diolis and lipolytic Clostridium lundense JF - Engineering in Life Sciences N2 - A major part of edible oil is subjected to bleaching procedures, primarily with minerals applied as adsorbers. Their recycling is currently done either by regaining the oil via organic solvent extraction or by using the spent bleaching earth (SBE) as additive for animal feed, etc. As a new method, the reutilization of the by-product SBE for the microbiologic formation of acetone, butanol, and ethanol (ABE) is presented as proof-of-concept. The SBE was taken from a palm oil cleaning process. The recycling concept is based on the application of lipolytic clostridia strains. Due to considerably long fermentation times, co-fermentation with Candida rugosa and enzymatic hydrolyses of the bound oil with a subsequent clostridia fermentation are shown as alternative routes. Anaerobic fermentations under comparison of different clostridia strains were performed with glycerol media, enzymatically hydrolyzed palm oil and SBE. Solutes, side product compositions and productivities were quantified via HPLC. A successful production of ABE solutes from SBE has been done with a yield of 0.15 g butanol per gram of bound glycerol. Thus, the biotechnological recycling of the waste stream is possible in principle. Inhibition of the substrate suspension has been observed. A chromatographic ion-exchange of substrates increased the biomass concentration. Y1 - 2014 U6 - http://dx.doi.org/10.1002/elsc.201300113 SN - 1618-2863 VL - 14 IS - 4 SP - 425 EP - 432 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pasteur, Aline A1 - Tippkötter, Nils A1 - Kampeis, Percy A1 - Ulber, Roland T1 - Optimization of high gradient magnetic separation filter units for the purification of fermentation products JF - IEEE TRANSACTIONS ON MAGNETICS N2 - High gradient magnetic separation (HGMS) has been established since the early 1970s. A more recent application of these systems is the use in bioprocesses. To integrate the HGMS in a fermentation process, it is necessary to optimize the separation matrix with regard to the magnetic separation characteristics and permeability of the non-magnetizable components of the fermentation broth. As part of the work presented here, a combined fluidic and magnetic force finite element model simulation was created using the software COMSOL Multiphysics and compared with separation experiments. Finally, as optimal lattice orientation of the separation matrix, a transversal rhombohedral arrangement was defined. The high suitability of the new filter matrix has been verified by separation experiments. Y1 - 2014 U6 - http://dx.doi.org/10.1109/TMAG.2014.2325535 SN - 0018-9464 N1 - Article Sequence Number: 5000607 INSPEC Accession Number: 14663042 VL - 50 IS - 10 SP - Artikel 5000607 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Thiel, Alexander A1 - Muffler, Kai A1 - Tippkötter, Nils A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Ruf, Friedrich A1 - Ulber, Roland T1 - Aufarbeitung von Polyphenolen aus Weizen mittels Zeolithen am Beispiel der Ferulasäure JF - Chemie IngenieurTechnik N2 - Aufarbeitung von Polyphenolen aus Weizenmittels Zeolithen am Beispiel der Ferulasa¨ ureAlexander Thiel1, Kai Muffler1, Nils Tippko¨ tter1, Kirstin Suck2, Ulrich Sohling2, Friedrich Ruf3und Roland Ulber1,*DOI: 10.1002/cite.201400031Bei der Ferulasa¨ure handelt es sich um einen Wertstoff, der aus Weizen gewonnen und in der Lebensmittel- und Pharma-industrie eingesetzt werden kann. Der Einsatz von Weizen als nachwachsende Rohstoffquelle ist allerdings nur dann wirt-schaftlich durchfu¨hrbar, wenn eine Prozessintegration in die bestehenden industriellen Verfahren gewa¨hrleistet oder einedirekte Konkurrenz zur Mehl- und Sta¨rkeindustrie vermieden werden kann. In diesem Artikel wird ein Verfahren aufge-zeigt, welches hohe Ausbeuten ermo¨glicht und eine Konkurrenz zu bestehenden Verwertungspfaden vermeidet. Y1 - 2015 U6 - http://dx.doi.org/10.1002/cite.201400031 N1 - Englischer Titel: Downstream Processing of Polyphenols from Wheat by Zeolites using the Example of Ferulic Acid VL - 87 IS - 1-2 SP - 128 EP - 136 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Schumann, Christiane A1 - Rogin, Sabine A1 - Schneider, Horst A1 - Tippkötter, Nils A1 - Oster, Jürgen A1 - Kampeis, Percy T1 - Simultane Atline-Quantifizierung von Magnetpartikeln und Mikroorganismen bei einer HGMS-Filtration JF - Chemie Ingenieur Technik N2 - Es wird eine neue Atline-Messmethode vorgestellt, mit der während einer Hochgradienten-Magnetseparation (HGMS)-Filtration eine simultane Quantifizierung von Magnetpartikeln und Mikroorganismen im Filtrat vorgenommen werden kann. Dabei gelingt die Quantifizierung signifikant besser als mit bisher verwendeten Messmethoden. Mit dieser Methode ist es möglich, die Trennleistung einer HGMS-Filtration zu bestimmen und einen Filterdurchbruch durch Konzentrationsanstiege im Bereich einiger µg L−1 von Magnetpartikeln im Filtrat frühzeitig zu detektieren, ohne dass nennenswerte Partikelmengen verloren gehen. Y1 - 2015 U6 - http://dx.doi.org/10.1002/cite.201300158 N1 - Englischer Titel: Simultaneous Atline Quantification of Magnetic Particles and Microorganisms in the HGMS Filtration VL - 87 IS - 1-2 SP - 137 EP - 149 ER - TY - JOUR A1 - Thiel, Alexander A1 - Muffler, Kai A1 - Tippkötter, Nils A1 - Suck, Kirstin A1 - Sohling, Ulrich A1 - Hruschka, Steffen M. A1 - Ulber, Roland T1 - A novel integrated downstream processing approach to recover sinapic acid, phytic acid and proteins from rapeseed meal JF - Journal of Chemical Technology and Biotechnology N2 - BACKGROUND Currently, several techniques exist for the downstream processing of protein, phytic acid and sinapic acid from rapeseed and rapeseed meal, but no technique has been developed to separate all of the components in one process. In this work, two new downstream processing strategies focusing on recovering sinapic acid, phytic acid and protein from rapeseed meal were established. RESULTS The sinapic acid content was enhanced by a factor of 4.5 with one method and 5.1 with the other. The isolation of sinapic acid was accomplished using a zeolite-based adsorbent with high adsorptive and optimal desorption characteristics. Phytic acid was isolated using the anion-exchange resin Purolite A200®. In addition, the processes resulted in two separated protein fractions. The ratios of globulin and albumin ratio to the total protein were 59.2% and 40.1%, respectively. The steps were then combined in two different ways: (a) a ‘sequential process’ using the zeolite and A200 in batch processes; and (b) a ‘parallel process’ using only A200 in a chromatographic system to separate all of the compounds. CONCLUSIONS It can be concluded that isolation of all three components was possible in both processes. These could enhance the added value of current processes using rapeseed meal as a protein source. © 2015 Society of Chemical Industry Y1 - 2015 U6 - http://dx.doi.org/10.1002/jctb.4664 VL - 90 IS - 11 SP - 1999 EP - 2006 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Al-Kaidy, Huschyar A1 - Duwe, Anna A1 - Huster, Manuel A1 - Muffler, Kai A1 - Schlegel, Christin A1 - Tim, Sieker A1 - Stadtmüller, Ralf A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Biotechnology and bioprocess engineering – from the first ullmann's article to recent trends JF - ChemBioEng Reviews N2 - For several thousand years, biotechnology and its associated technical processes have had a great impact on the development of mankind. Based on empirical methods, in particular for the production of foodstuffs and daily commodities, these disciplines have become one of the most innovative future issues. Due to the increasing detailed understanding of cellular processes, production strains can now be optimized. In combination with modern bioprocesses, a variety of bulk and fine chemicals as well as pharmaceuticals can be produced efficiently. In this article, some of the current trends in biotechnology are discussed. Y1 - 2015 U6 - http://dx.doi.org/10.1002/cben.201500008 VL - 2 IS - 3 SP - 175 EP - 184 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Al-Kaidy, Huschyar A1 - Tippkötter, Nils T1 - Superparamagnetic hydrophobic particles as shell material for digital microfluidic droplets and proof-of-principle reaction assessments with immobilized laccase JF - Engineering in Life Sciences N2 - In the field of biotechnology and molecular biology, the use of small liquid volumes has significant advantages. In particular, screening and optimization runs with acceptable amounts of expensive and hardly available catalysts, reagents, or biomolecules are feasible with microfluidic technologies. The presented new microfluidic system is based on the inclusion of small liquid volumes by a protective shell of magnetizable microparticles. Hereby, discrete aqueous microreactor drops with volumes of 1–30 μL can be formed on a simple planar surface. A digital movement and manipulation of the microreactor is performed by overlapping magnetic forces. The magnetic forces are generated by an electrical coil matrix positioned below a glass plate. With the new platform technology, several discrete reaction compartments can be moved simultaneously on one surface. Due to the magnetic fields, the reactors can even be merged to initiate reactions by mixing or positioned above surface-immobilized catalysts and then opened by magnetic force. Comparative synthesis routes of the magnetizable shell particles and superhydrophobic glass slides including their performance and stability with the reaction platform are described. The influence of diffusive mass transport during the catalyzed reaction is discussed by evaluation finite element model of the microreactor. Furthermore, a first model dye reaction of the enzyme laccase has been established. Y1 - 2016 U6 - http://dx.doi.org/10.1002/elsc.201400124 VL - 16 IS - 3 SP - 222 EP - 230 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Roth, Jasmine A1 - Tippkötter, Nils T1 - Evaluation of lignocellulosic material for butanol production using enzymatic hydrolysate medium JF - Cellulose Chemistry and Technology N2 - Butanol is a promising gasoline additive and platform chemical that can be readily produced via acetone-butanolethanol (ABE) fermentation from pretreated lignocellulosic materials. This article examines lignocellulosic material from beech wood for ABE fermentation, using Clostridium acetobutylicum. First, the utilization of both C₅₋ (xylose) and C₆₋ (glucose) sugars as sole carbon source was investigated in static cultivation, using serum bottles and synthetic medium. The utilization of pentose sugar resulted in a solvent yield of 0.231 g·g_sugar⁻¹, compared to 0.262 g·g_sugar⁻¹ using hexose. Then, the Organosolv pretreated crude cellulose fibers (CF) were enzymatically decomposed, and the resulting hydrolysate medium was analyzed for inhibiting compounds (furans, organic acids, phenolics) and treated with ionexchangers for detoxification. Batch fermentation in a bioreactor using CF hydrolysate medium resulted in a total solvent yield of 0.20 gABE·g_sugar⁻¹. Y1 - 2016 VL - 50 IS - 3-4 SP - 405 EP - 410 PB - Editura Academiei Romane CY - Bukarest ER - TY - JOUR A1 - Rösch, C. A1 - Kratz, F. A1 - Hering, T. A1 - Trautmann, S. A1 - Umanskaya, N. A1 - Tippkötter, Nils A1 - Müller-Renno, C.M. A1 - Ulber, R. A1 - Hannig, M. A1 - Ziegler, C. T1 - Albumin-lysozyme interactions: cooperative adsorption on titanium and enzymatic activity JF - Colloids and Surfaces B: Biointerfaces N2 - The interplay of albumin (BSA) and lysozyme (LYZ) adsorbed simultaneously on titanium was analyzed by gel electrophoresis and BCA assay. It was found that BSA and lysozyme adsorb cooperatively. Additionally, the isoelectric point of the respective protein influences the adsorption. Also, the enzymatic activity of lysozyme and amylase (AMY) in mixtures with BSA was considered with respect to a possible influence of protein-protein interaction on enzyme activity. Indeed, an increase of lysozyme activity in the presence of BSA could be observed. In contrast, BSA does not influence the activity of amylase. Y1 - 2016 U6 - http://dx.doi.org/10.1016/j.colsurfb.2016.09.048 VL - 149 IS - 1 SP - 115 EP - 121 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Horbach, Andreas A1 - Duong, Minh Tuan A1 - Staat, Manfred T1 - Modelling of compressible and orthotropic surgical mesh implants based on optical deformation measurement JF - Journal of the mechanical behavior of biomedical materials Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.jmbbm.2017.06.012 SN - 1751-6161 VL - 74 SP - 400 EP - 410 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Michael, Hackl A1 - Mayer, Katharina A1 - Weber, Mareike A1 - Staat, Manfred A1 - van Riet, Roger A1 - Burkhart, Klau Josef A1 - Müller, Lars Peter A1 - Wegmann, Kilian T1 - Plate osteosynthesis of proximal ulna fractures : a biomechanical micromotion analysis JF - The journal of hand surgery Y1 - 2017 U6 - http://dx.doi.org/10.1016/j.jhsa.2017.05.014 SN - 0363-5023 VL - 42 IS - 10 SP - 834.e1 EP - 834.e7 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pfaff, Raphael A1 - Enning, Manfred T1 - Güterwagen 4.0 - Der Güterwagen für das Internet der Dinge. Teil 2: Ausgewählte technische Aspekte und Prozesse JF - ETR - Eisenbahntechnische Rundschau Y1 - 2017 SN - 0013-2845 VL - 66 IS - 5 SP - 74 EP - 77 PB - DVV Media Group CY - Hamburg ER - TY - JOUR A1 - Pfaff, Raphael A1 - Schmidt, Bernd T1 - Daten in der Cloud - und dann? JF - Deine Bahn N2 - Schienenverkehrssysteme stehen in zunehmendem Wettbewerb, sowohl untereinander als auch mit anderen Verkehrsträgern. Als wichtiger Aspekt zur Steigerung der Kosteneffizienz wird die Digitalisierung des Betriebs und der Fahrzeuge betrachtet. Über eine Prognose der Ausfallwahrscheinlichkeit bzw. Restlebensdauer von Subsystemen können mittels Digitalisierung die Instandhaltungskosten gesenkt werden. Die geringen Fehlerraten im System Bahn machen die Nutzung besonderer Simulationstechniken notwendig. In diesem Beitrag wird gezeigt, wie sich die Subsystemverfügbarkeit aus den beobachteten Fehlerraten der Teilfunktionen vorhersagen lässt. Y1 - 2016 SN - 0948-7263 IS - 6 SP - 50 EP - 55 PB - Bahn-Fachverlag CY - Berlin ER - TY - JOUR A1 - Schneider, Wilhelm A1 - Schneider, Bettina A1 - Kinder, Stephanie A1 - Meinhardt, Kerstin T1 - Grundbegriffe der Abgabenordnung JF - Das Wirtschaftsstudium : wisu ; Zeitschrift für Ausbildung, Examen, Berufseinstieg und Fortbildung Y1 - 2017 SN - 0340-3084 N1 - Printausgabe in der Bibliothek Eupener Str. unter der Signatur 43 Z 568 VL - 46 IS - 5 SP - 575 EP - 581 PB - Lange CY - Düsseldorf ER - TY - JOUR A1 - Yoshinobu, Tatsuo A1 - Miyamoto, Ko-ichiro A1 - Werner, Frederik A1 - Poghossian, Arshak A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species JF - Annual Review of Analytical Chemistry N2 - A light-addressable potentiometric sensor (LAPS) is a semiconductor-based chemical sensor, in which a measurement site on the sensing surface is defined by illumination. This light addressability can be applied to visualize the spatial distribution of pH or the concentration of a specific chemical species, with potential applications in the fields of chemistry, materials science, biology, and medicine. In this review, the features of this chemical imaging sensor technology are compared with those of other technologies. Instrumentation, principles of operation, and various measurement modes of chemical imaging sensor systems are described. The review discusses and summarizes state-of-the-art technologies, especially with regard to the spatial resolution and measurement speed; for example, a high spatial resolution in a submicron range and a readout speed in the range of several tens of thousands of pixels per second have been achieved with the LAPS. The possibility of combining this technology with microfluidic devices and other potential future developments are discussed. Y1 - 2017 U6 - http://dx.doi.org/10.1146/annurev-anchem-061516-045158 SN - 1936-1327 VL - 10 SP - 225 EP - 246 PB - Annual Reviews CY - Palo Alto, Calif. ER -