TY - JOUR A1 - Böhnisch, Nils A1 - Braun, Carsten A1 - Marzocca, Pierre A1 - Muscarello, Vincenzo T1 - Impact of aerodynamic interactions on aeroelastic stability of wing-propeller systems JF - Applied Sciences N2 - This paper presents initial findings from aeroelastic studies conducted on a wing-propeller model, aimed at evaluating the impact of aerodynamic interactions on wing flutter mechanisms and overall aeroelastic performance. The flutter onset is assessed using a frequency-domain method. Mid-fidelity tools based on the time-domain approach are then exploited to account for the complex aerodynamic interaction between the propeller and the wing. Specifically, the open-source software DUST and MBDyn are leveraged for this purpose. The investigation covers both windmilling and thrusting conditions. During the trim process, adjustments to the collective pitch of the blades are made to ensure consistency across operational points. Time histories are then analyzed to pinpoint flutter onset, and corresponding frequencies and damping ratios are identified. The results reveal a marginal destabilizing effect of aerodynamic interaction on flutter speed, approximately 5%. Notably, the thrusting condition demonstrates a greater destabilizing influence compared to the windmilling case. These comprehensive findings enhance the understanding of the aerodynamic behavior of such systems and offer valuable insights for early design predictions and the development of streamlined models for future endeavors. Y1 - 2024 U6 - https://doi.org/10.3390/app14198709 SN - 2076-3417 N1 - This article belongs to the Special Issue "Advances in Unsteady Aerodynamics and Aeroelasticity" VL - 14 IS - 19 PB - MDPI CY - Basel ER - TY - JOUR A1 - Cheilytko, Andrii A1 - Alexopoulos, Spiros A1 - Pozhuyev, Andriy A1 - Kaufhold, Oliver T1 - An analytical approach to power optimization of concentrating solar power plants with thermal storage JF - Solar N2 - This paper deals with the problem of determining the optimal capacity of concentrated solar power (CSP) plants, especially in the context of hybrid solar power plants. This work presents an innovative analytical approach to optimizing the capacity of concentrated solar plants. The proposed method is based on the use of additional non-dimensional parameters, in particular, the design factor and the solar multiple factor. This paper presents a mathematical optimization model that focuses on the capacity of concentrated solar power plants where thermal storage plays a key role in the energy source. The analytical approach provides a more complete understanding of the design process for hybrid power plants. In addition, the use of additional factors and the combination of the proposed method with existing numerical methods allows for more refined optimization, which allows for the more accurate selection of the capacity for specific geographical conditions. Importantly, the proposed method significantly increases the speed of computation compared to that of traditional numerical methods. Finally, the authors present the results of the analysis of the proposed system of equations for calculating the levelized cost of electricity (LCOE) for hybrid solar power plants. The nonlinearity of the LCOE on the main calculation parameters is shown KW - analytical approach KW - optimization model KW - solar multiple factor KW - design factor KW - hybrid solar power plants KW - thermal storage KW - concentrated solar power Y1 - 2024 U6 - https://doi.org/10.3390/solar4030024 SN - 2673-9941 VL - 4 IS - 3 SP - 509 EP - 525 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bertz, Morten A1 - Schöning, Michael Josef A1 - Molinnus, Denise A1 - Homma, Takayuki T1 - Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping JF - Physica status solidi (a) applications and materials science N2 - To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem. KW - hydrogen peroxide KW - optical spore trapping KW - Raman spectroscopy KW - sterilization conditions KW - temperature Y1 - 2024 U6 - https://doi.org/10.1002/pssa.202300866 SN - 1862-6319 (Online) SN - 1862-6300 (Print) N1 - Corresponding author: Michael J. Schöning IS - Early View PB - Wiley-VCH CY - Berlin ER - TY - JOUR A1 - Nehr, Sascha A1 - Baus, Lukas A1 - Çinar, Hasan A1 - Elsen, Ingo A1 - Frauenrath, Tobias T1 - Indoor environmental quality assessment in passively ventilated classrooms in Germany and estimation of ventilation energy losses JF - Journal of Building Engineering N2 - In this field study we present an approach for the comprehensive and room-specific assessment of parameters with the overall aim to realize energy-efficient provision of hygienically harmless and thermally comfortable indoor environmental quality in naturally ventilated non-residential buildings. The approach is based on (i) conformity assessment of room design parameters, (ii) empirical determination of theoretically expected occupant-specific supply air flow rates and corresponding air exchange rates, (iii) experimental determination of real occupant-specific supply air flow rates and corresponding air exchange rates, (iv) measurement of indoor environmental exposure conditions of T, RH, cCO2 , cPM2.5 and cTVOC, and (v) determination of real energy demands for the prevailing ventilation scheme. Underlying assessment criteria comprise the indoor environmental parameters of category II of EN 16798-1: Temperature T = 20 ◦C–24 ◦C, and relative humidity RH = 25 %–60 % as well as the guide values of the German Federal Environment Agency for cCO2 cPM2.5 and cTVOC of 1000 ppm, 15 μg m⁻³, and 1 mg m ⁻³, respectively. Investigation objects are six naturally ventilated classrooms of a German secondary school. Major factors influencing indoor environmental quality in these classrooms are the specific room volume per occupant and the window opening area. It is concluded that the rigorous implementation of ventilation recommendations laid down by the German Federal Environment Agency is ineffective with respect to anticipated indoor environmental parameters and inefficient with respect to ventilation energy losses on the order of about 10 kWh m⁻² a ⁻¹ to 30 kWh m⁻² a ⁻¹. KW - Indoor air quality KW - Indoor environmental quality KW - Energy-efficient ventilation KW - CO2 KW - PM2.5 Y1 - 2024 SN - 2352-7102 VL - 97 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tix, Julian A1 - Gotthardt, Leon A1 - Bode, Joshua A1 - Karabacak, Burak A1 - Nordmann, Janne A1 - Hengsbach, Jan-Niklas A1 - Ulber, Roland A1 - Tippkötter, Nils T1 - Enhancement of succinic acid production by Actinobacillus succinogenes in an electro-bioreactor JF - Fermentation N2 - This work examines the electrochemically enhanced production of succinic acid using the bacterium Actinobacillus succinogenes. The principal objective is to enhance the metabolic potential of glucose and CO2 utilization via the C4 pathway in order to synthesize succinic acid. We report on the development of an electro-bioreactor system to increase succinic acid production in a power-2-X approach. The use of activated carbon fibers as electrode surfaces and contact areas allows A. succinogenes to self-initiate biofilm formation. The integration of an electrical potential into the system shifts the redox balance from NAD+ to NADH, increasing the efficiency of metabolic processes. Mediators such as neutral red facilitate electron transfer within the system and optimize the redox reactions that are crucial for increased succinic acid production. Furthermore, the role of carbon nanotubes (CNTs) in electron transfer was investigated. The electro-bioreactor system developed here was operated in batch mode for 48 h and showed improvements in succinic acid yield and concentration. In particular, a run with 100 µM neutral red and a voltage of −600 mV achieved a yield of 0.7 gsuccinate·gglucose−1. In the absence of neutral red, a higher yield of 0.72 gsuccinate·gglucose−1 was achieved, which represents an increase of 14% compared to the control. When a potential of −600 mV was used in conjunction with 500 µg∙L−1 CNTs, a 21% increase in succinate concentration was observed after 48 h. An increase of 33% was achieved in the same batch by increasing the stirring speed. These results underscore the potential of the electro-bioreactor system to markedly enhance succinic acid production. KW - A. succinogenes KW - power-to-X KW - electrofermentation KW - electro-bioreactor KW - succinate Y1 - 2024 U6 - https://doi.org/10.3390/fermentation10100504 SN - 2311-5637 N1 - Corresponding author: Nils Tippkötter N1 - This article belongs to the Special Issue "Advance in Microbial Electrochemical Technologies" VL - 10 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Chwallek, Constanze A1 - Nawrath, Lara A1 - Krastina, Anzelika A1 - Bruksle, Ieva T1 - Supportive research on sustainable entrepreneurship and business practices JF - SECA Sustainable Entrepreneurship for Climate Action Y1 - 2024 SN - 978-952-316-514-4 (pdf) SN - 2954-1654 (on-line publication) IS - 3 PB - Lapland University of Applied Sciences Ltd CY - Rovaniemi ER - TY - JOUR A1 - Valero, Daniel A1 - Felder, Stefan A1 - Kramer, Matthias A1 - Wang, Hang A1 - Carrillo, José M. A1 - Pfister, Michael A1 - Bung, Daniel Bernhard T1 - Air–water flows JF - Journal of Hydraulic Research N2 - High Froude-number open-channel flows can entrain significant volumes of air, a phenomenon that occurs continuously in spillways, in free-falling jets and in hydraulic jumps, or as localized events, notably at the toe of hydraulic jumps or in plunging jets. Within these flows, turbulence generates millions of bubbles and droplets as well as highly distorted wavy air–water interfaces. This phenomenon is crucial from a design perspective, as it influences the behaviour of high-velocity flows, potentially impairing the safety of dam operations. This review examines recent scientific and engineering progress, highlighting foundational studies and emerging developments. Notable advances have been achieved in the past decades through improved sampling of flows and the development of physics-based models. Current challenges are also identified for instrumentation, numerical modelling and (up)scaling that hinder the formulation of fundamental theories, which are instrumental for improving predictive models, able to offer robust support for the design of large hydraulic structures at prototype scale. Y1 - 2024 U6 - https://doi.org/10.1080/00221686.2024.2379482 SN - 0022-1686 (Print) SN - 1814-2079 (Online) VL - 62 IS - 4 SP - 319 EP - 339 PB - Taylor & Francis ER -