TY - JOUR A1 - Chen, Chao A1 - Jost, Peter A1 - Volker, Hanno A1 - Kaminski, Marvin A1 - Wirtssohn, Matti R. A1 - Engelmann, Ulrich M. A1 - Krüger, K. A1 - Schlich, Franziska F. A1 - Schlockermann, Carl A1 - Lobo, Ricardo P.S.M. A1 - Wuttig, Matthias T1 - Dielectric properties of amorphous phase-change materials JF - Physical Review B Y1 - 2017 U6 - http://dx.doi.org/10.1103/PhysRevB.95.094111 SN - 2469-9950 VL - 95 IS - 9 SP - Article number 094111 ER - TY - JOUR A1 - Dadfar, Dryed Mohammadali A1 - Camozzi, Denise A1 - Darguzyte, Milita A1 - Roemhild, Karolin A1 - Varvarà, Paola A1 - Metselaar, Josbert A1 - Banala, Srinivas A1 - Straub, Marcel A1 - Güver, Nihan A1 - Engelmann, Ulrich M. A1 - Slabu, Ioana A1 - Buhl, Miriam A1 - Leusen, Jan van A1 - Kögerler, Paul A1 - Hermanns-Sachweh, Benita A1 - Schulz, Volkmar A1 - Kiessling, Fabian A1 - Lammers, Twan T1 - Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance JF - Journal of Nanobiotechnology N2 - Superparamagnetic iron oxide nanoparticles (SPION) are extensively used for magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), as well as for magnetic fluid hyperthermia (MFH). We here describe a sequential centrifugation protocol to obtain SPION with well-defined sizes from a polydisperse SPION starting formulation, synthesized using the routinely employed co-precipitation technique. Transmission electron microscopy, dynamic light scattering and nanoparticle tracking analyses show that the SPION fractions obtained upon size-isolation are well-defined and almost monodisperse. MRI, MPI and MFH analyses demonstrate improved imaging and hyperthermia performance for size-isolated SPION as compared to the polydisperse starting mixture, as well as to commercial and clinically used iron oxide nanoparticle formulations, such as Resovist® and Sinerem®. The size-isolation protocol presented here may help to identify SPION with optimal properties for diagnostic, therapeutic and theranostic applications. Y1 - 2020 U6 - http://dx.doi.org/10.1186/s12951-020-0580-1 SN - 1477-3155 VL - 18 IS - Article number 22 SP - 1 EP - 13 PB - Nature Portfolio ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Buhl, Eva Miriam A1 - Baumann, Martin A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Agglomeration of magnetic nanoparticles and its effects on magnetic hyperthermia JF - Current Directions in Biomedical Engineering Y1 - 2017 U6 - http://dx.doi.org/10.1515/cdbme-2017-0096 SN - 2364-5504 VL - 3 IS - 2 SP - 457 EP - 460 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Buhl, Eva Miriam A1 - Draack, Sebastian A1 - Viereck, Thilo A1 - Frank, A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Magnetic relaxation of agglomerated and immobilized iron oxide nanoparticles for hyperthermia and imaging applications JF - IEEE Magnetic Letters N2 - Magnetic nanoparticles (MNPs) are used as therapeutic and diagnostic agents for local delivery of heat and image contrast enhancement in diseased tissue. Besides magnetization, the most important parameter that determines their performance for these applications is their magnetic relaxation, which can be affected when MNPs immobilize and agglomerate inside tissues. In this letter, we investigate different MNP agglomeration states for their magnetic relaxation properties under excitation in alternating fields and relate this to their heating efficiency and imaging properties. With focus on magnetic fluid hyperthermia, two different trends in MNP heating efficiency are measured: an increase by up to 23% for agglomerated MNP in suspension and a decrease by up to 28% for mixed states of agglomerated and immobilized MNP, which indicates that immobilization is the dominant effect. The same comparatively moderate effects are obtained for the signal amplitude in magnetic particle spectroscopy. Y1 - 2018 U6 - http://dx.doi.org/10.1109/LMAG.2018.2879034 SN - 1949-307X VL - 9 IS - Article number 8519617 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Pourshahidi, Mohammad Ali A1 - Shalaby, Ahmed A1 - Krause, Hans-Joachim T1 - Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation JF - Journal of Magnetism and Magnetic Materials N2 - Biomedical applications of magnetic nanoparticles (MNP) fundamentally rely on the particles’ magnetic relaxation as a response to an alternating magnetic field. The magnetic relaxation complexly depends on the interplay of MNP magnetic and physical properties with the applied field parameters. It is commonly accepted that particle core size is a major contributor to signal generation in all the above applications, however, most MNP samples comprise broad distribution spanning nm and more. Therefore, precise knowledge of the exact contribution of individual core sizes to signal generation is desired for optimal MNP design generally for each application. Specifically, we present a magnetic relaxation simulation-driven analysis of experimental frequency mixing magnetic detection (FMMD) for biosensing to quantify the contributions of individual core size fractions towards signal generation. Applying our method to two different experimental MNP systems, we found the most dominant contributions from approx. 20 nm sized particles in the two independent MNP systems. Additional comparison between freely suspended and immobilized MNP also reveals insight in the MNP microstructure, allowing to use FMMD for MNP characterization, as well as to further fine-tune its applicability in biosensing. Y1 - 2022 U6 - http://dx.doi.org/10.1016/j.jmmm.2022.169965 SN - 0304-8853 VL - 563 IS - In progress, Art. No. 169965 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Roeth, Anjali A.J. A1 - Eberbeck, Dietmar A1 - Buhl, Eva Miriam A1 - Neumann, Ulf Peter A1 - Schmitz-Rode, Thomas A1 - Slabu, Ioana T1 - Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells JF - Scientific Reports N2 - Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95% was achieved by depositing an intracellular total thermal energy with about 50% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65% after MNP were internalized inside cells. Y1 - 2018 U6 - http://dx.doi.org/10.1038/s41598-018-31553-9 SN - 2045-2322 VL - 8 IS - 1 SP - Article number 13210 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Seifert, Julian A1 - Mues, Benedikt A1 - Roitsch, Stefan A1 - Ménager, Christine A1 - Schmidt, Annette M. A1 - Slabu, Ioana T1 - Heating efficiency of magnetic nanoparticles decreases with gradual immobilization in hydrogels JF - Journal of Magnetism and Magnetic Materials Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.jmmm.2018.09.113 SN - 0304-8853 VL - 471 IS - 1 SP - 486 EP - 494 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Shalaby, Ahmed A1 - Shasha, Carolyn A1 - Krishnan, Kannan M. A1 - Krause, Hans-Joachim T1 - Comparative modeling of frequency mixing measurements of magnetic nanoparticles using micromagnetic simulations and Langevin theory JF - Nanomaterials N2 - Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90% of the frequency mixing magnetic response signal is generated by the largest 10% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory. KW - Magnetic nanoparticles KW - Frequency mixing magnetic detection KW - Langevin theory KW - Micromagnetic simulation KW - Nonequilibrium dynamics Y1 - 2021 SN - 2079-4991 U6 - http://dx.doi.org/10.3390/nano11051257 N1 - This article belongs to the Special Issue Applications and Properties of Magnetic Nanoparticles VL - 11 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Teeman, Eric A1 - Slabu, Iona A1 - Krishnan, Kannan M. T1 - Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic Néel-Brown Langevin simulation JF - Journal of Magnetism and Magnetic Materials Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.jmmm.2018.09.041 SN - 0304-8853 VL - 471 IS - 1 SP - 450 EP - 456 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Simsek, Beril A1 - Shalaby, Ahmed A1 - Krause, Hans-Joachim T1 - Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study JF - Sensors N2 - Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled Néel–Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays. KW - key performance indicators KW - magnetic biosensing KW - coupled Néel–Brownian relaxation dynamics KW - frequency mixing magnetic detection KW - magnetic relaxation KW - micromagnetic simulation KW - magnetic nanoparticles Y1 - 2024 U6 - http://dx.doi.org/10.3390/s24061945 SN - 1424-8220 N1 - This article belongs to the Special Issue "Advances in Magnetic Sensors and Their Applications" VL - 24 IS - 6 PB - MDPI CY - Basel ER -