TY - JOUR A1 - Janus, Kevin Alexander A1 - Achtsnicht, Stefan A1 - Drinic, Aleksander A1 - Kopp, Alexander A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Transient magnesium-based thin-film temperature sensor on a flexible, bioabsorbable substrate for future medical applications JF - Applied Research N2 - In this work, the bioabsorbable materials, namely fibroin, polylactide acid (PLA), magnesium and magnesium oxide are investigated for their application as transient, resistive temperature detectors (RTD). For this purpose, a thin-film magnesium-based meander-like electrode is deposited onto a flexible, bioabsorbable substrate (fibroin or PLA) and encapsulated (passivated) by additional magnesium oxide layers on top and below the magnesium-based electrode. The morphology of different layered RTDs is analyzed by scanning electron microscopy. The sensor performance and lifetime of the RTD is characterized both under ambient atmospheric conditions between 30°C and 43°C, and wet tissue-like conditions with a constant temperature regime of 37°C. The latter triggers the degradation process of the magnesium-based layers. The 3-layers RTDs on a PLA substrate could achieve a lifetime of 8.5 h. These sensors also show the best sensor performance under ambient atmospheric conditions with a mean sensitivity of 0.48 Ω/°C ± 0.01 Ω/°C. KW - Silk fibroin KW - Polylactide acid KW - Bioabsorbable KW - Resistive temperature detector Y1 - 2023 U6 - http://dx.doi.org/10.1002/appl.202300102 SN - 2702-4288 (Print) N1 - Corresponding author: Michael Josef Schöning IS - Accepted manuscript PB - Wiley-VCH ER - TY - JOUR A1 - Vögele, Stefan A1 - Josyabhatla, Vishnu Teja A1 - Ball, Christopher A1 - Rhoden, Imke A1 - Grajewski, Matthias A1 - Rübbelke, Dirk A1 - Kuckshinrichs, Wilhelm T1 - Robust assessment of energy scenarios from stakeholders' perspectives JF - Energy N2 - Using scenarios is vital in identifying and specifying measures for successfully transforming the energy system. Such transformations can be particularly challenging and require the support of a broader set of stakeholders. Otherwise, there will be opposition in the form of reluctance to adopt the necessary technologies. Usually, processes for considering stakeholders' perspectives are very time-consuming and costly. In particular, there are uncertainties about how to deal with modifications in the scenarios. In principle, new consulting processes will be required. In our study, we show how multi-criteria decision analysis can be used to analyze stakeholders' attitudes toward transition paths. Since stakeholders differ regarding their preferences and time horizons, we employ a multi-criteria decision analysis approach to identify which stakeholders will support or oppose a transition path. We provide a flexible template for analyzing stakeholder preferences toward transition paths. This flexibility comes from the fact that our multi-criteria decision aid-based approach does not involve intensive empirical work with stakeholders. Instead, it involves subjecting assumptions to robustness analysis, which can help identify options to influence stakeholders' attitudes toward transitions. Y1 - 2023 U6 - http://dx.doi.org/10.1016/j.energy.2023.128326 SN - 1873-6785 (Online) SN - 0360-5442 (Print) IS - In Press, Article 128326 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rhoden, Imke A1 - Ball, Christopher Stephen A1 - Grajewski, Matthias A1 - Kuckshinrich, Wilhelm T1 - Reverse engineering of stakeholder preferences – A multi-criteria assessment of the German passenger car sector JF - Renewable and Sustainable Energy Reviews N2 - Germany is a frontrunner in setting frameworks for the transition to a low-carbon system. The mobility sector plays a significant role in this shift, affecting different people and groups on multiple levels. Without acceptance from these stakeholders, emission targets are out of reach. This research analyzes how the heterogeneous preferences of various stakeholders align with the transformation of the mobility sector, looking at the extent to which the German transformation paths are supported and where stakeholders are located. Under the research objective of comparing stakeholders' preferences to identify which car segments require additional support for a successful climate transition, a status quo of stakeholders and car performance criteria is the foundation for the analysis. Stakeholders' hidden preferences hinder the derivation of criteria weightings from stakeholders; therefore, a ranking from observed preferences is used. This study's inverse multi-criteria decision analysis means that weightings can be predicted and used together with a recalibrated performance matrix to explore future preferences toward car segments. Results show that stakeholders prefer medium-sized cars, with the trend pointing towards the increased potential for alternative propulsion technologies and electrified vehicles. These insights can guide the improved targeting of policy supporting the energy and mobility transformation. Additionally, the method proposed in this work can fully handle subjective approaches while incorporating a priori information. A software implementation of the proposed method completes this work and is made publicly available. KW - Regionalization KW - Multi-criteria decision analysis KW - Preference assessment KW - E-Mobility KW - Mobility transition Y1 - 2023 U6 - http://dx.doi.org/10.1016/j.rser.2023.113352 SN - 1364-0321 VL - 181 IS - July 2023 SP - Article number: 113352 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bertz, Morten A1 - Molinnus, Denise A1 - Schöning, Michael Josef A1 - Homma, Takayuki T1 - Real-time monitoring of H₂O₂ sterilization on individual bacillus atrophaeus spores by optical sensing with trapping Raman spectroscopy JF - Chemosensors N2 - Hydrogen peroxide (H₂O₂), a strong oxidizer, is a commonly used sterilization agent employed during aseptic food processing and medical applications. To assess the sterilization efficiency with H₂O₂, bacterial spores are common microbial systems due to their remarkable robustness against a wide variety of decontamination strategies. Despite their widespread use, there is, however, only little information about the detailed time-resolved mechanism underlying the oxidative spore death by H₂O₂. In this work, we investigate chemical and morphological changes of individual Bacillus atrophaeus spores undergoing oxidative damage using optical sensing with trapping Raman microscopy in real-time. The time-resolved experiments reveal that spore death involves two distinct phases: (i) an initial phase dominated by the fast release of dipicolinic acid (DPA), a major spore biomarker, which indicates the rupture of the spore’s core; and (ii) the oxidation of the remaining spore material resulting in the subsequent fragmentation of the spores’ coat. Simultaneous observation of the spore morphology by optical microscopy corroborates these mechanisms. The dependence of the onset of DPA release and the time constant of spore fragmentation on H₂O₂ shows that the formation of reactive oxygen species from H₂O₂ is the rate-limiting factor of oxidative spore death. KW - DPA (dipicolinic acid) KW - sterilization KW - Bacillus atrophaeus spores KW - optical trapping KW - Raman spectroscopy KW - optical sensor setup Y1 - 2023 U6 - http://dx.doi.org/10.3390/chemosensors11080445 SN - 2227-9040 N1 - This article belongs to the Special Issue "Biosensors and Chemical Sensors for Food and Healthcare Monitoring—Celebrating the 10th Anniversary" VL - 8 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kuchler, Timon A1 - Günthner, Roman A1 - Ribeiro, Andrea A1 - Hausinger, Renate A1 - Streese, Lukas A1 - Wöhnl, Anna A1 - Kesseler, Veronika A1 - Negele, Johanna A1 - Assali, Tarek A1 - Carbajo-Lozoya, Javier A1 - Lech, Maciej A1 - Adorjan, Kristina A1 - Stubbe, Hans Christian A1 - Hanssen, Henner A1 - Kotliar, Konstantin A1 - Haller, Berhard A1 - Heemann, Uwe A1 - Schmaderer, Christoph T1 - Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic inflammation N2 - Background Post-COVID-19 syndrome (PCS) is a lingering disease with ongoing symptoms such as fatigue and cognitive impairment resulting in a high impact on the daily life of patients. Understanding the pathophysiology of PCS is a public health priority, as it still poses a diagnostic and treatment challenge for physicians. Methods In this prospective observational cohort study, we analyzed the retinal microcirculation using Retinal Vessel Analysis (RVA) in a cohort of patients with PCS and compared it to an age- and gender-matched healthy cohort (n = 41, matched out of n = 204). Measurements and main results PCS patients exhibit persistent endothelial dysfunction (ED), as indicated by significantly lower venular flicker-induced dilation (vFID; 3.42% ± 1.77% vs. 4.64% ± 2.59%; p = 0.02), narrower central retinal artery equivalent (CRAE; 178.1 [167.5–190.2] vs. 189.1 [179.4–197.2], p = 0.01) and lower arteriolar-venular ratio (AVR; (0.84 [0.8–0.9] vs. 0.88 [0.8–0.9], p = 0.007). When combining AVR and vFID, predicted scores reached good ability to discriminate groups (area under the curve: 0.75). Higher PCS severity scores correlated with lower AVR (R = − 0.37 p = 0.017). The association of microvascular changes with PCS severity were amplified in PCS patients exhibiting higher levels of inflammatory parameters. Conclusion Our results demonstrate that prolonged endothelial dysfunction is a hallmark of PCS, and impairments of the microcirculation seem to explain ongoing symptoms in patients. As potential therapies for PCS emerge, RVA parameters may become relevant as clinical biomarkers for diagnosis and therapy management. KW - Endothelial dysfunction KW - Long COVID KW - Post-COVID-19 syndrome KW - retinal microvasculature Y1 - 2023 U6 - http://dx.doi.org/10.1007/s10456-023-09885-6 N1 - Corresponding author: Christoph Schmaderer VL - 26 SP - 547 EP - 563 PB - Springer Nature CY - Dordrecht ER - TY - JOUR A1 - Gaigall, Daniel T1 - On the applicability of several tests to models with not identically distributed random effects JF - Statistics : A Journal of Theoretical and Applied Statistics N2 - We consider Kolmogorov–Smirnov and Cramér–von-Mises type tests for testing central symmetry, exchangeability, and independence. In the standard case, the tests are intended for the application to independent and identically distributed data with unknown distribution. The tests are available for multivariate data and bootstrap procedures are suitable to obtain critical values. We discuss the applicability of the tests to random effects models, where the random effects are independent but not necessarily identically distributed and with possibly unknown distributions. Theoretical results show the adequacy of the tests in this situation. The quality of the tests in models with random effects is investigated by simulations. Empirical results obtained confirm the theoretical findings. A real data example illustrates the application. KW - central symmetry test KW - exchangeability test KW - independence test KW - random effects KW - not identically distributed Y1 - 2023 SN - 0323-3944 U6 - http://dx.doi.org/10.1080/02331888.2023.2193748 SN - 1029-4910 VL - 57 PB - Taylor & Francis CY - London ER - TY - JOUR A1 - Ringers, Christa A1 - Bialonski, Stephan A1 - Ege, Mert A1 - Solovev, Anton A1 - Hansen, Jan Niklas A1 - Jeong, Inyoung A1 - Friedrich, Benjamin M. A1 - Jurisch-Yaksi, Nathalie T1 - Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia JF - eLife N2 - Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping. Y1 - 2023 U6 - http://dx.doi.org/10.7554/eLife.77701 SN - 2050-084X VL - 12 PB - eLife Sciences Publications ER - TY - JOUR A1 - Liphardt, Anna-Maria A1 - Fernandez-Gonzalo, Rodrigo A1 - Albracht, Kirsten A1 - Rittweger, Jörn A1 - Vico, Laurence T1 - Musculoskeletal research in human space flight – unmet needs for the success of crewed deep space exploration JF - npj Microgravity N2 - Based on the European Space Agency (ESA) Science in Space Environment (SciSpacE) community White Paper “Human Physiology – Musculoskeletal system”, this perspective highlights unmet needs and suggests new avenues for future studies in musculoskeletal research to enable crewed exploration missions. The musculoskeletal system is essential for sustaining physical function and energy metabolism, and the maintenance of health during exploration missions, and consequently mission success, will be tightly linked to musculoskeletal function. Data collection from current space missions from pre-, during-, and post-flight periods would provide important information to understand and ultimately offset musculoskeletal alterations during long-term spaceflight. In addition, understanding the kinetics of the different components of the musculoskeletal system in parallel with a detailed description of the molecular mechanisms driving these alterations appears to be the best approach to address potential musculoskeletal problems that future exploratory-mission crew will face. These research efforts should be accompanied by technical advances in molecular and phenotypic monitoring tools to provide in-flight real-time feedback. Y1 - 2023 U6 - http://dx.doi.org/10.1038/s41526-023-00258-3 SN - 2373-8065 VL - 9 IS - Article number: 9 SP - 1 EP - 9 PB - Springer Nature ER - TY - JOUR A1 - Karschuck, Tobias A1 - Schmidt, Stefan A1 - Achtsnicht, Stefan A1 - Poghossian, Arshak A1 - Wagner, Patrick A1 - Schöning, Michael Josef T1 - Multiplexing system for automated characterization of a capacitive field-effect sensor array JF - Physica Status Solidi A N2 - In comparison to single-analyte devices, multiplexed systems for a multianalyte detection offer a reduced assay time and sample volume, low cost, and high throughput. Herein, a multiplexing platform for an automated quasi-simultaneous characterization of multiple (up to 16) capacitive field-effect sensors by the capacitive–voltage (C–V) and the constant-capacitance (ConCap) mode is presented. The sensors are mounted in a newly designed multicell arrangement with one common reference electrode and are electrically connected to the impedance analyzer via the base station. A Python script for the automated characterization of the sensors executes the user-defined measurement protocol. The developed multiplexing system is tested for pH measurements and the label-free detection of ligand-stabilized, charged gold nanoparticles. KW - Capacitive field-effect sensor KW - Gold nanoparticles KW - Label-free detection KW - Multicell KW - Multiplexing Y1 - 2023 U6 - http://dx.doi.org/10.1002/pssa.202300265 SN - 1862-6300 (Print) SN - 1862-6319 (Online) N1 - Corresponding author: Michael Josef Schöning VL - 220 IS - 22 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Morais, Paulo V. A1 - Suman, Pedro H. A1 - Schöning, Michael Josef A1 - Siqueira Junior, José R. A1 - Orlandi, Marcelo O. T1 - Layer-by-layer film based on Sn₃O₄ nanobelts as sensing units to detect heavy metals using a capacitive field-effect sensor platform JF - Chemosensors N2 - Lead and nickel, as heavy metals, are still used in industrial processes, and are classified as “environmental health hazards” due to their toxicity and polluting potential. The detection of heavy metals can prevent environmental pollution at toxic levels that are critical to human health. In this sense, the electrolyte–insulator–semiconductor (EIS) field-effect sensor is an attractive sensing platform concerning the fabrication of reusable and robust sensors to detect such substances. This study is aimed to fabricate a sensing unit on an EIS device based on Sn₃O₄ nanobelts embedded in a polyelectrolyte matrix of polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) using the layer-by-layer (LbL) technique. The EIS-Sn₃O₄ sensor exhibited enhanced electrochemical performance for detecting Pb²⁺ and Ni²⁺ ions, revealing a higher affinity for Pb²⁺ ions, with sensitivities of ca. 25.8 mV/decade and 2.4 mV/decade, respectively. Such results indicate that Sn₃O₄ nanobelts can contemplate a feasible proof-of-concept capacitive field-effect sensor for heavy metal detection, envisaging other future studies focusing on environmental monitoring. KW - Sn₃O₄ KW - nanobelts KW - field-effect sensor KW - LbL films KW - heavy metals Y1 - 2023 U6 - http://dx.doi.org/10.3390/chemosensors11080436 SN - 2227-9040 N1 - This article belongs to the Special Issue The Application of Electrochemical Sensors or Biosensors Based on Nanomaterials VL - 11 IS - 8 PB - MDPI CY - Basel ER -