TY - JOUR A1 - Schöning, Michael Josef A1 - Bronder, Thomas A1 - Wu, Chunsheng A1 - Scheja, Sabrina A1 - Jessing, Max A1 - Metzger-Boddien, Christoph A1 - Keusgen, Michael A1 - Poghossian, Arshak T1 - Label-Free DNA Detection with Capacitive Field-Effect Devices—Challenges and Opportunities JF - Proceedings N2 - Field-effect EIS (electrolyte-insulator-semiconductor) sensors modified with a positively charged weak polyelectrolyte layer have been applied for the electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge. The EIS sensors are able to detect the existence of target DNA amplicons in PCR (polymerase chain reaction) samples and thus, can be used as tool for a quick verification of DNA amplification and the successful PCR process. Due to their miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge, those sensors can serve as possible platform for the development of label-free DNA chips. Possible application fields as well as challenges and limitations will be discussed. Y1 - 2017 U6 - http://dx.doi.org/10.3390/proceedings1080719 SN - 2504-3900 N1 - This article belongs to the Proceedings of "Proceedings of the 5th International Symposium on Sensor Science (I3S 2017)" VL - 1 IS - 8 SP - Artikel 719 PB - MDPI CY - Basel ER - TY - JOUR A1 - Welden, Rene A1 - Jablonski, Melanie A1 - Wege, Christina A1 - Keusgen, Michael A1 - Wagner, Patrick Hermann A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Light-Addressable Actuator-Sensor Platform for Monitoring and Manipulation of pH Gradients in Microfluidics: A Case Study with the Enzyme Penicillinase JF - Biosensors N2 - The feasibility of light-addressed detection and manipulation of pH gradients inside an electrochemical microfluidic cell was studied. Local pH changes, induced by a light-addressable electrode (LAE), were detected using a light-addressable potentiometric sensor (LAPS) with different measurement modes representing an actuator-sensor system. Biosensor functionality was examined depending on locally induced pH gradients with the help of the model enzyme penicillinase, which had been immobilized in the microfluidic channel. The surface morphology of the LAE and enzyme-functionalized LAPS was studied by scanning electron microscopy. Furthermore, the penicillin sensitivity of the LAPS inside the microfluidic channel was determined with regard to the analyte’s pH influence on the enzymatic reaction rate. In a final experiment, the LAE-controlled pH inhibition of the enzyme activity was monitored by the LAPS. KW - microfluidics KW - enzyme kinetics KW - actuator-sensor system KW - light-addressable electrode KW - light-addressable potentiometric sensor Y1 - 2021 U6 - http://dx.doi.org/10.3390/bios11060171 SN - 2079-6374 N1 - This article belongs to the Special Issue "Selected Papers from the 1st International Electronic Conference on Biosensors (IECB 2020)" VL - 11 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Welden, Melanie A1 - Poghossian, Arshak A1 - Vahidpour, Farnoosh A1 - Wendlandt, Tim A1 - Keusgen, Michael A1 - Wege, Christina A1 - Schöning, Michael Josef T1 - Towards multi-analyte detection with field-effect capacitors modified with tobacco mosaic virus bioparticles as enzyme nanocarriers JF - Biosensors N2 - Utilizing an appropriate enzyme immobilization strategy is crucial for designing enzyme-based biosensors. Plant virus-like particles represent ideal nanoscaffolds for an extremely dense and precise immobilization of enzymes, due to their regular shape, high surface-to-volume ratio and high density of surface binding sites. In the present work, tobacco mosaic virus (TMV) particles were applied for the co-immobilization of penicillinase and urease onto the gate surface of a field-effect electrolyte-insulator-semiconductor capacitor (EISCAP) with a p-Si-SiO₂-Ta₂O₅ layer structure for the sequential detection of penicillin and urea. The TMV-assisted bi-enzyme EISCAP biosensor exhibited a high urea and penicillin sensitivity of 54 and 85 mV/dec, respectively, in the concentration range of 0.1–3 mM. For comparison, the characteristics of single-enzyme EISCAP biosensors modified with TMV particles immobilized with either penicillinase or urease were also investigated. The surface morphology of the TMV-modified Ta₂O₅-gate was analyzed by scanning electron microscopy. Additionally, the bi-enzyme EISCAP was applied to mimic an XOR (Exclusive OR) enzyme logic gate. KW - urease KW - enzyme-logic gate KW - bi-enzyme biosensor KW - capacitive field-effect sensor KW - tobacco mosaic virus (TMV) KW - penicillinase Y1 - 2022 U6 - http://dx.doi.org/10.3390/bios12010043 SN - 2079-6374 N1 - This article belongs to the Special Issue "Biosensors: 10th Anniversary Feature Papers" VL - 12 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Welden, Melanie A1 - Severins, Robin A1 - Poghossian, Arshak A1 - Wege, Christina A1 - Bongaerts, Johannes A1 - Siegert, Petra A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Detection of acetoin and diacetyl by a tobacco mosaic virus-assisted field-effect biosensor JF - Chemosensors N2 - Acetoin and diacetyl have a major impact on the flavor of alcoholic beverages such as wine or beer. Therefore, their measurement is important during the fermentation process. Until now, gas chromatographic techniques have typically been applied; however, these require expensive laboratory equipment and trained staff, and do not allow for online monitoring. In this work, a capacitive electrolyte–insulator–semiconductor sensor modified with tobacco mosaic virus (TMV) particles as enzyme nanocarriers for the detection of acetoin and diacetyl is presented. The enzyme acetoin reductase from Alkalihalobacillus clausii DSM 8716ᵀ is immobilized via biotin–streptavidin affinity, binding to the surface of the TMV particles. The TMV-assisted biosensor is electrochemically characterized by means of leakage–current, capacitance–voltage, and constant capacitance measurements. In this paper, the novel biosensor is studied regarding its sensitivity and long-term stability in buffer solution. Moreover, the TMV-assisted capacitive field-effect sensor is applied for the detection of diacetyl for the first time. The measurement of acetoin and diacetyl with the same sensor setup is demonstrated. Finally, the successive detection of acetoin and diacetyl in buffer and in diluted beer is studied by tuning the sensitivity of the biosensor using the pH value of the measurement solution. Y1 - 2022 U6 - http://dx.doi.org/10.3390/chemosensors10060218 SN - 2227-9040 N1 - This article belongs to the Special Issue "Nanostructured Devices for Biochemical Sensing" VL - 10 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Jablonski, Melanie A1 - Poghossian, Arshak A1 - Severin, Robin A1 - Keusgen, Michael A1 - Wege, Christian A1 - Schöning, Michael Josef T1 - Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles JF - Micromachines N2 - Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta₂O₅-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta₂O₅-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles. KW - capacitive field-effect sensor KW - plant virus detection KW - tobacco mosaic virus (TMV) KW - TMV adsorption KW - Ta₂O₅ gate Y1 - 2021 U6 - http://dx.doi.org/10.3390/mi12010057 VL - 12 IS - 1 PB - MDPI CY - Basel ER - TY - JOUR A1 - Pilas, Johanna A1 - Selmer, Thorsten A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Screen-printed carbon electrodes modified with graphene oxide for the design of a reagent-free NAD+-dependent biosensor array JF - Analytical Chemistry Y1 - 2019 U6 - http://dx.doi.org/10.1021/acs.analchem.9b04481 VL - 91 IS - 23 SP - 15293 EP - 15299 PB - ACS Publications CY - Washington ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Combined calorimetric gas- and spore-based biosensor array for online monitoring and sterility assurance of gaseous hydrogen peroxide in aseptic filling machines JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2019.111628 SN - 0956-5663 VL - 143 IS - 111628 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Bronder, Thomas A1 - Poghossian, Arshak A1 - Jessing, Max P. A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Surface regeneration and reusability of label-free DNA biosensors based on weak polyelectrolyte-modified capacitive field-effect structures JF - Biosensors and Bioelectronics Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.bios.2018.11.019 SN - 0956-5663 VL - 126 SP - 510 EP - 517 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Arreola, Julio A1 - Keusgen, Michael A1 - Schöning, Michael Josef T1 - Toward an immobilization method for spore-based biosensors in oxidative environment JF - Electrochimica Acta Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.electacta.2019.01.148 VL - 302 SP - 394 EP - 401 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Röhlen, Desiree A1 - Pilas, Johanna A1 - Dahmen, Markus A1 - Keusgen, Michael A1 - Selmer, Thorsten A1 - Schöning, Michael Josef T1 - Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes JF - Frontiers in Chemistry N2 - Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes. Y1 - 2018 U6 - http://dx.doi.org/10.3389/fchem.2018.00284 IS - 6 PB - Frontiers CY - Lausanne ER -