TY - CHAP A1 - Michaux, Frank A1 - Brunn, André A1 - Willert, Christian A1 - Kallweit, Stephan T1 - Automatic setup and calibration of a Robotic-PIV system using fiducial markers T2 - 21st International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics N2 - The use of industrial robots allows the precise manipulation of all components necessary for setting up a large-scale particle image velocimetry (PIV) system. The known internal calibration matrix of the cameras in combination with the actual pose of the industrial robots and the calculated transform from the fiducial markers to camera coordinates allow the precise positioning of the individual PIV components according to the measurement demands. In addition, the complete calibration procedure for generating the external camera matrix and the mapping functions for e.g. dewarping the stereo images can be automatically determined without further user interaction and thus the degree of automation can be extended to nearly 100%. This increased degree of automation expands the applications range of PIV systems, in particular for measurement tasks with severe time constraints. KW - PIV calibration KW - Automation KW - Robotics KW - Fiducial marker system KW - Recognition algorithms Y1 - 2024 U6 - https://doi.org/10.55037/lxlaser.21st.163 N1 - 21st International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, July 8-11, 2024 ER - TY - JOUR A1 - Luft, Angela A1 - Balc, Nicolae A1 - Bremen, Sebastian T1 - Experts' perspectives on the adoption of additive manufacturing in the industry and its interrelated implications in production structures JF - Acta Technica Napocensis N2 - Additive Manufacturing (AM) is a topic that is becoming more relevant to many companies globally. With AM's progressive development and use for series production, integrating the technology into existing production structures is becoming an important criterion for businesses. This study qualitatively examines the actual state and different perspectives on the integration of AM in production structures. Seven semi-structured interviews were conducted and analyzed. The interview partners were high-level experts in Additive Manufacturing and production systems from industry and science. Four main themes were identified. Key findings are the far-reaching interrelationships and implications of AM within production structures. Specific AM-related aspects were identified. Those can be used to increase the knowledge and practical application of the technology in the industry and as a foundation for economic considerations. KW - AM implementation KW - thematic analysis KW - interviews KW - manufacturing management KW - production systems KW - Additive manufacturing Y1 - 2024 SN - 1221-5872 VL - 67 IS - 1s SP - 159 EP - 168 PB - Technical University of Cluj-Napoca CY - Cluj-Napoca ER - TY - JOUR A1 - Luft, Nils A1 - Arntz, Kristian T1 - The impact and challenges of Industry 4.0 on factory design, organization and management JF - Acta Technica Napocensis N2 - The fourth industrial revolution is on its way to reshape manufacturing and value creation in a profound way. The underlying technologies like cyber-physical systems (CPS), big data, collaborative robotics, additive manufacturing or artificial intelligence offer huge potentials for the optimization and evolution of production systems. However, many manufacturing companies struggle to implement these technologies. This can only in part be attributed to the lack of skilled personal within these companies or a missing digitalization strategy. Rather, there is a fundamental incompatibility between the way current production systems and companies (Industry 3.0) are structured across multiple dimensions compared to what is necessary for industry 4.0. This is especially true in manufacturing systems and their transition towards flexible, decentralized and autonomous value creation networks. This paper shows across various dimensions these incompatibilities within manufacturing systems, explores their reasons and discusses a different approach to create a foundation for Industry 4.0 in manufacturing companies. KW - Manufacturing Process Chains KW - Tool Making KW - Operational Control KW - Technology Planning KW - Factory Planning KW - Industry 4.0 Y1 - 2024 SN - 1221-5872 VL - 67 IS - 1s SP - 151 EP - 158 PB - Technical University of Cluj-Napoca CY - Cluj-Napoca ER - TY - JOUR A1 - Abbas, Karim A1 - Balc, Nicolae A1 - Bremen, Sebastian A1 - Hedwig, Lukas T1 - Polyetheretherketone (PEEK) in rapid tooling: advancements and applications for fused filament fabrication of rubber molds JF - Acta Technica Napocensis N2 - Establishing high-performance polymers in additive manufacturing opens up new industrial applications. Polyetheretherketone (PEEK) was initially used in aerospace but is now widely applied in automotive, electronics, and medical industries. This study focuses on developing applications using PEEK and Fused Filament Fabrication for cost-efficient vulcanization injection mold production. A proof of concept confirms PEEK’s suitability for AM mold making, withstanding vulcanization conditions. Printing PEEK above its glass transition temperature of 145 °C is preferable due to its narrow process window. A new process strategy at room temperature is discussed, with micrographs showing improved inter-layer bonding at 410°C nozzle temperature and 0.1 mm layer thickness. Minimizing the layer thickness from 0.15 mm to 0.1 mm improves tensile strength by 16%. KW - Process Parameters KW - Rapid Tooling KW - Polyetheretherketone (PEEK) KW - Tensile Strength KW - Fused Filament Fabrication KW - Additive Manufacturing Y1 - 2024 SN - 1221-5872 VL - 67 IS - 1s SP - 13 EP - 22 PB - Technical University of Cluj-Napoca CY - Cluj-Napoca ER - TY - JOUR A1 - Eichler, Fabian A1 - Balc, Nicolae A1 - Bremen, Sebastian A1 - Schleser, Markus A1 - Schwarz, Alexander T1 - Research on reducing residual stresses of SLM parts made for downstream welding process JF - Acta Technica Napocensis N2 - In the face of the current trend towards larger and more complex production tasks in the SLM process and the current limitations in terms of maximum build space, the welding of SLM components to each other or to conventionally manufactured parts is becoming increasingly relevant. The fusion welding of SLM components made of 316L has so far been rarely investigated and if so, then for highly specialised laser welding processes. When welding with industrial gas welding processes such as MIG/MAG or TIG welding, distortions occur which are associated with the resulting residual stresses in the components. This paper investigates process-side influencing factors to avoid resulting residual stresses in SLM components made of 316L. The aim is to develop a strategy to build up SLM components as stress-free as possible in order to join them as profitably as possible with a downstream welding process. For this purpose, influencing parameters such as laser power, scan speed, but also scan vector length and different scan patterns are investigated with regard to their influence on residual stresses. KW - Residual Stresses KW - Hybrid Manufacturing KW - Welding KW - SLM KW - LPBF KW - Additive Manufacturing Y1 - 2024 SN - 1221-5872 VL - 67 IS - 1s SP - 69 EP - 78 PB - Technical University of Cluj-Napoca CY - Cluj-Napoca ER - TY - JOUR A1 - Knödler, Matthias A1 - Rühl, Clemens A1 - Emonts, Jessica A1 - Buyel, Johannes Felix T1 - Seasonal weather changes affect the yield and quality of recombinant proteins produced in transgenic tobacco plants in a greenhouse setting JF - Frontiers in Plant Science N2 - Transgenic plants have the potential to produce recombinant proteins on an agricultural scale, with yields of several tons per year. The cost-effectiveness of transgenic plants increases if simple cultivation facilities such as greenhouses can be used for production. In such a setting, we expressed a novel affinity ligand based on the fluorescent protein DsRed, which we used as a carrier for the linear epitope ELDKWA from the HIV-neutralizing antibody 2F5. The DsRed-2F5-epitope (DFE) fusion protein was produced in 12 consecutive batches of transgenic tobacco (Nicotiana tabacum) plants over the course of 2 years and was purified using a combination of blanching and immobilized metal-ion affinity chromatography (IMAC). The average purity after IMAC was 57 ± 26% (n = 24) in terms of total soluble protein, but the average yield of pure DFE (12 mg kg−1) showed substantial variation (± 97 mg kg−1, n = 24) which correlated with seasonal changes. Specifically, we found that temperature peaks (>28°C) and intense illuminance (>45 klx h−1) were associated with lower DFE yields after purification, reflecting the loss of the epitope-containing C-terminus in up to 90% of the product. Whereas the weather factors were of limited use to predict product yields of individual harvests conducted for each batch (spaced by 1 week), the average batch yields were well approximated by simple linear regression models using two independent variables for prediction (illuminance and plant age). Interestingly, accumulation levels determined by fluorescence analysis were not affected by weather conditions but positively correlated with plant age, suggesting that the product was still expressed at high levels, but the extreme conditions affected its stability, albeit still preserving the fluorophore function. The efficient production of intact recombinant proteins in plants may therefore require adequate climate control and shading in greenhouses or even cultivation in fully controlled indoor farms. KW - batch reproducibility KW - environmental correlation KW - fluorescent protein carrier KW - greenhouse cultivation KW - plant molecular farming Y1 - 2019 U6 - https://doi.org/10.3389/fpls.2019.01245 SN - 1664-462X (online-ressource) IS - 10 PB - Frontiers Media CY - Lausanne ER - TY - THES A1 - Emonts, Jessica T1 - Searching for many defective edges in hypergraphs Y1 - 2013 N1 - Ist auch als Online-Ausgabe erschienen: Emonts, Jessica: Searching for many defective edges in hypergraphs PB - Rheinisch-Westfälischen Technischen Hochschule Aachen CY - Aachen ER - TY - JOUR A1 - Bernau, C. R. A1 - Knödler, Matthias A1 - Emonts, Jessica A1 - Jäpel, Ronald Colin A1 - Buyel, Johannes Felix T1 - The use of predictive models to develop chromatography-based purification processes JF - Frontiers in Bioengineering and Biotechnology N2 - Chromatography is the workhorse of biopharmaceutical downstream processing because it can selectively enrich a target product while removing impurities from complex feed streams. This is achieved by exploiting differences in molecular properties, such as size, charge and hydrophobicity (alone or in different combinations). Accordingly, many parameters must be tested during process development in order to maximize product purity and recovery, including resin and ligand types, conductivity, pH, gradient profiles, and the sequence of separation operations. The number of possible experimental conditions quickly becomes unmanageable. Although the range of suitable conditions can be narrowed based on experience, the time and cost of the work remain high even when using high-throughput laboratory automation. In contrast, chromatography modeling using inexpensive, parallelized computer hardware can provide expert knowledge, predicting conditions that achieve high purity and efficient recovery. The prediction of suitable conditions in silico reduces the number of empirical tests required and provides in-depth process understanding, which is recommended by regulatory authorities. In this article, we discuss the benefits and specific challenges of chromatography modeling. We describe the experimental characterization of chromatography devices and settings prior to modeling, such as the determination of column porosity. We also consider the challenges that must be overcome when models are set up and calibrated, including the cross-validation and verification of data-driven and hybrid (combined data-driven and mechanistic) models. This review will therefore support researchers intending to establish a chromatography modeling workflow in their laboratory. KW - biopharmaceutical production process KW - Data-driven models KW - downstream processing design KW - experiment quality KW - hybrid model validation Y1 - 2022 U6 - https://doi.org/10.3389/fbioe.2022.1009102 SN - 2296-4185 (online-ressource) IS - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Emonts, Jessica A1 - Buyel, Johannes Felix T1 - An overview of descriptors to capture protein properties – Tools and perspectives in the context of QSAR modeling JF - Computational and Structural Biotechnology Journal N2 - Proteins are important ingredients in food and feed, they are the active components of many pharmaceutical products, and they are necessary, in the form of enzymes, for the success of many technical processes. However, production can be challenging, especially when using heterologous host cells such as bacteria to express and assemble recombinant mammalian proteins. The manufacturability of proteins can be hindered by low solubility, a tendency to aggregate, or inefficient purification. Tools such as in silico protein engineering and models that predict separation criteria can overcome these issues but usually require the complex shape and surface properties of proteins to be represented by a small number of quantitative numeric values known as descriptors, as similarly used to capture the features of small molecules. Here, we review the current status of protein descriptors, especially for application in quantitative structure activity relationship (QSAR) models. First, we describe the complexity of proteins and the properties that descriptors must accommodate. Then we introduce descriptors of shape and surface properties that quantify the global and local features of proteins. Finally, we highlight the current limitations of protein descriptors and propose strategies for the derivation of novel protein descriptors that are more informative. KW - Prediction of molecular features KW - Protein structure complexity KW - Quantitative structure activity relationship KW - Scalar parameters KW - Shape and surface properties Y1 - 2023 U6 - https://doi.org/10.1016/j.csbj.2023.05.022 SN - 2001-0370 (online-ressource) IS - 21 SP - 3234 EP - 3247 PB - Research Network of Computational and Structural Biotechnology CY - Gotenburg ER - TY - JOUR A1 - Rake, Heinrich A1 - Enning, Manfred A1 - Kurth, Johannes A1 - Schröder, Walter T1 - Automatic uncoupler completes automation at the hump JF - RGI - Railway Gazette International Y1 - 1994 SN - 0373-5346 VL - 150 IS - 6 SP - 371 EP - 374 PB - Reed Business CY - Sutton ER -