TY - JOUR A1 - Immel, Timo A1 - Grützke, Martin A1 - Späte, Anne-Katrin A1 - Groth, Ulrich A1 - Öhlschläger, Peter A1 - Huhn, Thomas T1 - Synthesis and X-ray structure analysis of a heptacoordinate titanium(IV)-bis-chelate with enhanced in vivo antitumor efficacy JF - Chemical Communications N2 - Chelate stabilization of a titanium(IV)–salan alkoxide by ligand exchange with 2,6-pyridinedicarboxylic acid (dipic) resulted in heptacoordinate complex 3 which is not redox-active, stable on silica gel and has increased aqueous stability. 3 is highly toxic in HeLa S3 and Hep G2 and has enhanced antitumor efficacy in a mouse cervical-cancer model. Y1 - 2012 U6 - http://dx.doi.org/10.1039/C2CC31624B SN - 1364-548X VL - 48 IS - 46 SP - 5790 EP - 5792 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Henken, F. E. A1 - Oosterhuis, K. A1 - Öhlschläger, Peter A1 - Bosch, L. A1 - Hooijberg, E. A1 - Haanen, J. B. A. G. A1 - Steenbergen, R. D. M. T1 - Preclinical safety evaluation of DNA vaccines encoding modified HPV16 E6 and E7 JF - Vaccine N2 - Persistent infection with high-risk human papillomaviruses (hrHPV) can result in the formation of anogenital cancers. As hrHPV proteins E6 and E7 are required for cancer initiation and maintenance, they are ideal targets for immunotherapeutic interventions. Previously, we have described the development of DNA vaccines for the induction of HPV16 E6 and E7 specific T cell immunity. These vaccines consist of ‘gene-shuffled’ (SH) versions of HPV16 E6 and E7 that were fused to Tetanus Toxin Fragment C domain 1 (TTFC) and were named TTFC-E6SH and TTFC-E7SH. Gene-shuffling was performed to avoid the risk of inducing malignant transformation at the vaccination site. Here, we describe the preclinical safety evaluation of these candidate vaccines by analysis of their transforming capacity in vitro using established murine fibroblasts (NIH 3T3 cells) and primary human foreskin keratinocytes (HFKs). We demonstrate that neither ectopic expression of TTFC-E6SH and TTFC-E7SH alone or in combination enabled NIH 3T3 cells to form colonies in soft agar. In contrast, expression of HPV16 E6WT and E7WT alone or in combination resulted in effective transformation. Similarly, retroviral transduction of HFKs from three independent donors with both TTFC-E6SH and TTFC-E7SH alone or in combination did not show any signs of immortalization. In contrast, the combined expression of E6WT and E7WT induced immortalization in HFKs from all donors. Based on these results we consider it justified to proceed to clinical evaluation of DNA vaccines encoding TTFC-E6SH and TTFC-E7SH in patients with HPV16 associated (pre)malignancies. Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.vaccine.2012.04.013 SN - 0264-410X VL - 30 IS - 28 SP - 4259 EP - 4266 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Almajhdi, Fahad N. A1 - Senger, Tilo A1 - Amer, Haitham M. A1 - Gissmann, Lutz A1 - Öhlschläger, Peter T1 - Design of a highly effective therapeutic HPV16 E6/E7-specific DNA vaccine: optimization by different ways of sequence rearrangements (Shuffling) JF - PLOS one N2 - Persistent infection with the high-risk Human Papillomavirus type 16 (HPV 16) is the causative event for the development of cervical cancer and other malignant tumors of the anogenital tract and of the head and neck. Despite many attempts to develop therapeutic vaccines no candidate has entered late clinical trials. An interesting approach is a DNA based vaccine encompassing the nucleotide sequence of the E6 and E7 viral oncoproteins. Because both proteins are consistently expressed in HPV infected cells they represent excellent targets for immune therapy. Here we report the development of 8 DNA vaccine candidates consisting of differently rearranged HPV-16 E6 and E7 sequences within one molecule providing all naturally occurring epitopes but supposedly lacking transforming activity. The HPV sequences were fused to the J-domain and the SV40 enhancer in order to increase immune responses. We demonstrate that one out of the 8 vaccine candidates induces very strong cellular E6- and E7- specific cellular immune responses in mice and, as shown in regression experiments, efficiently controls growth of HPV 16 positive syngeneic tumors. This data demonstrates the potential of this vaccine candidate to control persistent HPV 16 infection that may lead to malignant disease. It also suggests that different sequence rearrangements influence the immunogenecity by an as yet unknown mechanism. Y1 - 2014 U6 - http://dx.doi.org/10.1371/journal.pone.0113461 SN - 1932-6203 VL - 11 IS - 9 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Whitehead, Mark A1 - Öhlschläger, Peter A1 - Almajhdi, Fahad N. A1 - Alloza, Leonor A1 - Marzábal, Pablo A1 - Meyers, Ann E. A1 - Hitzeroth, Inga I. A1 - Rybicki, Edward P. T1 - Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice JF - BMC cancer Y1 - 2014 U6 - http://dx.doi.org/10.1186/1471-2407-14-367 SN - 1471-2407 IS - 14:367 SP - 1 EP - 15 PB - BioMed Central CY - London ER - TY - JOUR A1 - Takenaga, Shoko A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Öhlschläger, Peter A1 - Wagner, Torsten A1 - Schöning, Michael Josef T1 - Toward multi-analyte bioarray sensors: LAPS-based on-chip determination of a Michaelis–Menten-like kinetics for cell culturing JF - Physica status solidi A : Applications and materials science N2 - The metabolic activity of Chinese hamster ovary (CHO) cells was observed using a light-addressable potentiometric sensor (LAPS). The dependency toward different glucose concentrations (17–200 mM) follows a Michaelis–Menten kinetics trajectory with Kₘ = 32.8 mM, and the obtained Kₘ value in this experiment was compared with that found in literature. In addition, the pH shift induced by glucose metabolism of tumor cells transfected with the HPV-16 genome (C3 cells) was successfully observed. These results indicate the possibility to determine the tumor cells metabolism with a LAPS-based measurement device. Y1 - 2014 U6 - http://dx.doi.org/10.1002/pssa.201330464 SN - 1521-396X (E); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print) VL - 211 IS - 6 SP - 1410 EP - 1415 PB - Wiley-VCH CY - Weinheim ER - TY - CHAP A1 - Takenaga, Shoko A1 - Herrera, Cony F. A1 - Werner, Frederik A1 - Biselli, Manfred A1 - Schnitzler, Thomas A1 - Schöning, Michael Josef A1 - Öhlschläger, Peter A1 - Wagner, Torsten T1 - Detection of the metabolic activity of cells by differential measurements based on a single light-addressable potentiometric sensor chip T2 - 11. Dresdner Sensor-Symposium : 9.-11.12.2013 Y1 - 2013 SN - 978-3-9813484-5-3 SP - 63 EP - 67 ER - TY - JOUR A1 - Spiess, Elmar A1 - Wilfried, Reichardt A1 - Alvarez, Gerardo A1 - Gottrup, Marcus A1 - Öhlschläger, Peter T1 - An Artificial PAP Gene Breaks Self-tolerance and Promotes Tumor Regression in the TRAMP Model for Prostate Carcinoma JF - Molecular Therapy Y1 - 2011 SN - 1525-0016 VL - 20 IS - 3 SP - 555 EP - 564 PB - Elsevier CY - Amsterdam ER -