TY - JOUR A1 - Artmann, Gerhard A1 - Kelemen, Christina A1 - Porst, Dariusz A1 - Büldt, G. [u.a.] T1 - Temperature transitions of protein properties in human red blood cells. Artmann, Gerhard Michael, Kelemen, Christina; Porst, D.; Büldt, G.; Chien, S. JF - Biophysical Journal. 75 (1998), H. 6 Y1 - 1998 SN - 1542-0086 N1 - http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1299989&blobtype=pdf SP - 3179 EP - 3183 ER - TY - CHAP A1 - Stadler, Andreas M. A1 - Embs, Jan P. A1 - Zerlin, Kay A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Zaccai, Joe A1 - Büldt, Georg T1 - Temperature transitions of hemoglobin and cytosolic water diffusion in human red blood cells : [poster] N2 - Background Hemoglobin interactions in red blood cells Hemoglobin dynamics in human red blood cells Diffusion of H2O in red blood cells KW - Erythrozyt KW - Hämoglobin KW - cytosolic water diffusion KW - hemoglobin dynamics Y1 - 2007 ER - TY - JOUR A1 - Artmann, Gerhard A1 - Kelemen, C. A1 - Chien, S. T1 - Temperature transition of human hemoglobin at body temperature: effects of calcium. Kelemen, C.; Chien, S.; Artmann, Gerhard Michael JF - Biophysical journal. 80 (2001), H. 6 Y1 - 2001 SN - 1542-0086 SP - 2622 EP - 2630 ER - TY - JOUR A1 - Zerlin, Kay A1 - Kasischke, Nicole A1 - Digel, Ilya A1 - Maggakis-Kelemen, Christina A1 - Temiz Artmann, Aysegül A1 - Porst, Dariusz A1 - Kayser, Peter A1 - Linder, Peter A1 - Artmann, Gerhard T1 - Structural transition temperature of hemoglobins correlates with species’ body temperature JF - European Biophysics Journal. 37 (2007), H. 1 Y1 - 2007 SN - 1432-1017 SP - 1 EP - 10 ER - TY - BOOK A1 - Artmann, Gerhard T1 - Stem cell engineering : principles and applications / Gerhard M. Artmann ... eds. Y1 - 2011 SN - 978-3-642-11864-7 PB - Springer CY - Berlin [u.a.] ER - TY - CHAP A1 - Digel, Ilya A1 - Temiz Artmann, Aysegül A1 - Nojima, H. A1 - Artmann, Gerhard T1 - Some peculiarities of application of cluster ions generated by plasma in respect of indoor air purification :[abstract] N2 - Recently, the SHARP Corporation, Japan, has developed the world’s first "Plasma Cluster Ions (PCI)" air purification technology using plasma discharge to generate cluster ions. The new plasma cluster device releases positive and negative ions into the air, which are able to decompose and deactivate harmful airborne substances by chemical reactions. Because cluster ions consist of positive and negative ions that normally exist in the natural world, they are completely harmless and safe to humans. The amount of ozone generated by cluster ions is less than 0.01 ppm, which is significantly less than the 0.05-ppm standard for industrial operations and consumer electronics. This amount, thus, has no harming effects whatsoever on the human body. But particular properties and chemical processes in PCI treatment are still under study. It has been shown that PCI in most cases show strongly pronounced irreversible killing effects in respect of airborne microflora due to free-radical induced reactions and can be considered as a potent technology to disinfect both home, medical and industrial appliances. KW - Clusterion KW - Raumluft KW - Luftreiniger KW - Plasmacluster ion technology KW - Air purification Y1 - 2003 ER - TY - JOUR A1 - Kurulgan Demirci, Eylem A1 - Demirci, Taylan A1 - Linder, Peter A1 - Trzewik, Jürgen A1 - Gierkowski, Jessica Ricarda A1 - Gossmann, Matthias A1 - Kayser, Peter A1 - Porst, Dariusz A1 - Digel, Ilya A1 - Artmann, Gerhard A1 - Temiz Artmann, Aysegül T1 - rhAPC reduces the endothelial cell permeability via a decrease of contractile tensions induced by endothelial cells JF - Journal of Bioscience and Bioengineering N2 - All cells generate contractile tension. This strain is crucial for mechanically controlling the cell shape, function and survival. In this study, the CellDrum technology quantifying cell's (the cellular) mechanical tension on a pico-scale was used to investigate the effect of lipopolysaccharide (LPS) on human aortic endothelial cell (HAoEC) tension. The LPS effect during gram-negative sepsis on endothelial cells is cell contraction causing endothelium permeability increase. The aim was to finding out whether recombinant activated protein C (rhAPC) would reverse the endothelial cell response in an in-vitro sepsis model. In this study, the established in-vitro sepsis model was confirmed by interleukin 6 (IL-6) levels at the proteomic and genomic levels by ELISA, real time-PCR and reactive oxygen species (ROS) activation by florescence staining. The thrombin cellular contraction effect on endothelial cells was used as a positive control when the CellDrum technology was applied. Additionally, the Ras homolog gene family, member A (RhoA) mRNA expression level was checked by real time-PCR to support contractile tension results. According to contractile tension results, the mechanical predominance of actin stress fibers was a reason of the increased endothelial contractile tension leading to enhanced endothelium contractility and thus permeability enhancement. The originality of this data supports firstly the basic measurement principles of the CellDrum technology and secondly that rhAPC has a beneficial effect on sepsis influenced cellular tension. The technology presented here is promising for future high-throughput cellular tension analysis that will help identify pathological contractile tension responses of cells and prove further cell in-vitro models. KW - Cell permeability KW - Cellular force KW - Endothelial cells KW - Recombinant activated protein C KW - Lipopolysaccharide KW - Contractile tension KW - CellDrum Y1 - 2012 U6 - http://dx.doi.org/10.1016/j.jbiosc.2012.03.019 SN - 1347-4421 VL - 113 IS - 2 SP - 212 EP - 219 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Artmann, Gerhard A1 - Schmid-Schönbein, H. A1 - Grebe, R. A1 - Teitel, P. [u.a.] T1 - Restoration of Microsieve Filterability of Human Red Cells After Exposure to Hyperosmolarity and Lactazidosis: Effect of Vinpocetine. Schmid-Schönbein, H.; Grebe, R.; Teitel, P.; Artmann, Gerhard Michael, Eschweiler, H.; Schröder, Susanne JF - Drug Development Research. 14 (1988), H. 3-4 Y1 - 1988 SN - 1098-2299 N1 - Abstracts frei unter: SP - 205 EP - 211 ER - TY - JOUR A1 - Artmann, Gerhard A1 - Grebe, R. A1 - Homrighausen, A. A1 - Wolff, H. A1 - [u.a.], T1 - Response of normal and diabetic erythrocytes to membrane deformation by chemical and mechanical forces. Artmann, Gerhard Michael; Grebe, R.; Homrighausen, A.; Wolff, H.; Teitel, P.; Schmid-Schönbein, H. JF - 12. Jahrestagung der Gesellschaft für Mikrozirkulation Y1 - 1988 SP - 196 EP - 200 PB - Karger [u.a.] CY - Basel [u.a.] ER - TY - JOUR A1 - Temiz Artmann, Aysegül A1 - Kurulgan demirci, Eylem A1 - Fırat, Ipek Seda A1 - Oflaz, Hakan A1 - Artmann, Gerhard T1 - Recombinant activated protein C (rhAPC) affects lipopolysaccharide-induced mechanical compliance changes and beat frequency of mESC-derived cardiomyocyte monolayers JF - SHOCK KW - Septic cardiomyopathy KW - LPS KW - cardiomyocyte biomechanics KW - CellDrum KW - actin cytoskeleton Y1 - 2021 U6 - http://dx.doi.org/10.1097/SHK.0000000000001845 SN - 1540-0514 PB - Wolters Kluwer CY - Köln ER -