TY - CHAP A1 - Kern, Alexander A1 - Neskakis, Apostolos A1 - Müller, Klaus-Peter T1 - Blitzschutzkonzept für eine netz-autarke Hybridanlage am Beispiel der Anlage VATALI auf Kreta N2 - Netz-autarke Anlagen bestehen üblicherweise aus einer oder mehreren Photovoltaik- (PV-) Anlagen, ggf. auch Solarthermie- (ST-) Anlagen und einem oder mehreren kleineren Windgeneratoren (sie werden deshalb auch als Hybridanlagen bezeichnet) und werden vor allem in Gegenden mit sehr schlechter öffentlicher Energieversorgung eingesetzt, d.h. insbesondere in rel. dünn bewohnten Gebieten und in Entwicklungsländern. Der Blitzschutz von netz-autarken Hybridanlagen ist ein bislang noch vergleichsweise unzureichend bearbeitetes Fachgebiet. Für große Windenergie-Anlagen (WEA) wurde in den letzten Jahren eine Zahl von FuE-Projekten durchgeführt, zum Großteil finanziert durch die öffentliche Hand, zum kleineren Teil auch durch die Industrie, d.h. die WEAHersteller. Dabei wurden bestehende Defizite im Design der WEA festgestellt und Maßnahmen vorgeschlagen, die vor den mechanischen Zerstörungen insbesondere des Rotors und vor den Störungen und Zerstörungen an den elektrischen / elektronischen Systemen der WEA weitgehend Schutz bieten [1, 2, 3]. Der Stand-der- Normung ist im Entwurf DIN VDE 0127 Teil 24 „Blitzschutz für Windenergieanlagen“ (dt. Übersetzung des internationalen Drafts IEC 61400-24 „Wind turbine generator systems; Part 24: Lightning Protection“) dokumentiert [4]. Die Maßnahmen sind allerdings insbesondere für größere WEA vorgesehen; im Falle kleinerer WEA lassen sie sich nur bedingt umsetzen. Trotzdem sind auch kleinere WEA rel. stark blitzeinschlaggefährdet, wenn sie auf einer Bergkuppe o.ä. platziert werden. Für solche kleinere WEA, wie sie bei Hybridanlagen üblicherweise Verwendung finden, müssen die Blitzschutzmaßnahmen aus der DIN VDE 0127 Teil 24 angepasst werden. Für PV- und ST-Anlagen ist eine entsprechende Blitzschutz-Norm noch nicht in Sicht. Hier ist vor allem der Schutz gegen direkte Blitzeinschläge in die Anlage bzw. die Gebäude noch nicht ausreichend beachtet. Blitzfangeinrichtungen sind oft nicht vorgesehen. In aller Regel hat man dabei bisher eine Ausführungsform des Blitzschutzes realisiert, die primär einen Ferneinschlag berücksichtigt und die dabei entstehenden induzierten, rel. energieschwachen Überspannungen durch schwächere Schutzelemente wie Rückstromdioden, Bypassdioden und zum Teil thermisch überwachte Varistoren begrenzt [5, 6, 7]. Diese Schutzelemente können allerdings bei Naheinschlägen bzw. Direkteinschlägen überlastet und damit zerstört werden. Darüber hinaus können Nahoder Direkteinschläge auch zur Schwächung der elektrischen Festigkeit der PVModulisolierung führen. Die Folge davon sind lokale extreme Wärmeentwicklungen, die sogar ein Schmelzen von Glas (sekundärer Langzeiteffekt) hervorrufen könnten. Bei einem Blitzeinschlag in die netz-autarke Hybridanlage VATALI auf Kreta im Jahre 2000 wurden sowohl einige mechanische wie auch elektrische Komponenten der Anlage zerstört bzw. zum Teil schwer beschädigt. Die Anlage VATALI besaß zum Zeitpunkt des Blitzeinschlags keinen wirksamen Blitzschutz. Der Gesamtschaden der Hardware belief sich auf ca. 60.000,- EURO. Die exponierte Stellung der Anlage auf einer Bergspitze stellte und stellt nach wie vor ein enormes Blitzeinschlag-Risiko dar, so dass auch zukünftig mit Blitzeinwirkungen gerechnet werden muss. Die Anlage wurde inspiziert, blitzschutz-technische Erfordernisse definiert und daraus Ertüchtigungsmaßnahmen abgeleitet, die mit überschaubarem Aufwand realisierbar sind. KW - Blitzschutz KW - Hybridanlage KW - Regenerative Energieanlagen KW - Lightning protection KW - renewable energy KW - hybrid system Y1 - 2001 ER - TY - CHAP A1 - Kern, Alexander A1 - Krämer, Heinz-Josef T1 - Blitzschutzkonzept für eine bauliche Anlage mit Stahlkonstruktion und metallenen Wänden N2 - Bauliche Anlagen mit Stahlkonstruktionen (bzw. auch Stahlbetonskelett- Konstruktionen) und metallenen Wänden sind bereits in sehr großer Zahl errichtet. Dazu gehören kleinere bis größere Lagerhallen ebenso wie Einkaufszentren. Sie zeichnen sich durch große Flexibilität, einfache Planung, kurze Bauzeit und rel. geringe Kosten aus. Auch in der nahen Zukunft ist deshalb mit Planung und Errichtung weiterer solcher baulicher Anlagen zu rechnen. Abhängig von der Nutzung der Hallen sind auch mehr oder weniger umfangreiche elektrische und elektronische Systeme vorhanden, die wichtige Funktionen sicherstellen müssen. Der Blitzschutz für diese baulichen Anlagen sollte sich also nicht nur im „klassischen“ Gebäude-Blitzschutz nach DIN V 0185-3 VDE V 0185 Teil 3 [1] erschöpfen; ein Ergänzung hin zu einem sinnvollen Grundschutz der elektrischen und elektronischen Systeme nach DIN V 0185-4 VDE V 0185 Teil 4 [2] ist anzuraten. Im folgenden Beitrag wird ein Konzept vorgestellt, mit dem ein hochwertiger Blitzschutz sowohl der baulichen Anlage und der darin befindlichen Personen, als auch der elektrischen und elektronischen Systeme verwirklicht werden kann. Insbesondere bei großflächigen Hallen stellen sich dabei besondere Anforderungen. Das Konzept und die zugehörigen blitzschutz-technischen Maßnahmen können drei Hauptbereichen zugeordnet werden: - Äußerer Blitzschutz; - Innerer Blitzschutz; - weitergehende besondere Maßnahmen. Das Konzept sowie die Maßnahmen werden allgemein beschrieben und teilweise anhand einer ausgeführten Anlage mit Fotos beispielhaft dokumentiert. KW - Blitzschutz KW - Stahlbetonkonstruktion KW - Lightning protection KW - reinforced concrete Y1 - 2003 ER - TY - CHAP A1 - Zischank, Wolfgang J. A1 - Kern, Alexander A1 - Frentzel, Ralf A1 - Heidler, Fridolin A1 - Seevers, M. T1 - Assessment of the lightning transient coupling to control cables interconnecting structures in large industrial facilities and power plants N2 - Large industrial facilities and power plants often require a huge number fo information and control cables between the differnet structures. These I&C-cables can be routed in reinforced concrete cable ducts or in isolated buried cable runs. KTA 2206 is the German lightning protection standard for nuclear power plants. During the last several years considerable effort has been made to revise this standard. Despite the well established principles and design guidelines for the construction of the lightning protection system, this standard puts special emphasis on the coupling of transient overvoltages to I&C-cables. KW - Blitzschutz KW - Elektromagnetische Kopplung KW - Überspannung KW - Kraftwerke KW - Industrieanlagen KW - Lightning KW - current distribution KW - electromagnetic coupling KW - overvoltages Y1 - 2000 ER - TY - CHAP A1 - Darveniza, M. A1 - Flisowski, Z. A1 - Kern, Alexander A1 - Landers, E.-U. A1 - LoPiparo, G. A1 - Mazzetti, C. A1 - Rousseau, A. A1 - Sherlock, J. T1 - Application problems of the probabilistic approach to the assessment of risk for structures and services N2 - The paper deals with the development of the probabilistic approach to the assessment of risk due to lightning. Sources of damage, types of damage and types of loss are defined and, accordingly, the procedure for risk analysis and the way of assessment of different risk components is proposed. The way to evaluate the influence of different protection measures (lightning protection system; shielding of structure, cables and equipment; routing of internal wiring; surge protective device) in reducing such probabilities is considered. The paper has been prepared within the framework of the activity of IEC TC81-WG9/CLC TC81-WG4 directed to prepare the draft IEC 62305-2 Risk Management, in cooperation with the Secretary of IEC/CLC TC81. KW - Blitzschutz KW - Risikoabwägung KW - Lightning protection system KW - risk assessment KW - protection measures Y1 - 2002 ER - TY - CHAP A1 - Kern, Alexander T1 - Abschätzung des Blitzschadensrisikos für bauliche Anlagen - Die neue Bestimmung DIN V VDE V 0185 Teil 2 : 2002 - Allgemeines, Abschätzungsverfahren, Berechnungsbeispiele N2 - Ein vorausschauendes Risikomanagement beinhaltet, Risiken für das Unternehmen zu kalkulieren. Es liefert Entscheidungsgrundlagen, um diese Risiken zu begrenzen und es macht transparent, welche Risiken sinnvollerweise über Versicherungen abgedeckt werden sollten. Beim Versicherungsmanagement ist jedoch zu bedenken, dass zur Erreichung bestimmter Ziele Versicherungen nicht immer geeignet sind (z.B. Erhaltung der Lieferfähigkeit). Eintrittswahrscheinlichkeiten bestimmter Risiken lassen sich durch Versicherungen nicht verändern. Bei Unternehmen, die mit umfangreichen elektronischen Einrichtungen produzieren oder Dienstleistungen erbringen (und das sind heutzutage wohl die meisten), muss auch das Risiko durch Blitzeinwirkungen besondere Berücksichtigung finden. Dabei ist zu beachten, dass der Schaden aufgrund der Nicht-Verfügbarkeit der elektronischen Einrichtungen und damit der Produktion bzw. der Dienstleistung und ggf. der Verlust von Daten den Hardware-Schaden an der betroffenen Anlage oft bei weitem übersteigt. Im Blitzschutz gewinnt innovatives Denken in Schadensrisiken langsam an Bedeutung. Risikoanalysen haben die Objektivierung und Quantifizierung der Gefährdung von baulichen Anlagen und ihrer Inhalte durch direkte und indirekte Blitzeinschläge zum Ziel. Seinen Niederschlag hat dieses neue Denken in der neuen deutschen Vornorm DIN V 0185-2 VDE V 0185 Teil 2 [1] gefunden. Die hier vorgegebene Risikoanalyse gewährleistet, dass ein für alle Beteiligten nachvollziehbares Blitzschutz-Konzept erstellt werden kann, das technisch und wirtschaftlich optimiert ist, d.h. bei möglichst geringem Aufwand den notwendigen Schutz gewährleisten kann. Die sich aus der Risikoanalyse ergebenden Schutzmaßnahmen sind dann in den weiteren Normenteilen der neuen Reihe VDE V 0185 [2, 3] detailliert beschrieben. KW - Blitzschutz KW - Risikomanagement KW - Risikoabschätzung KW - Lightning protection KW - Risk management KW - Risk assessment Y1 - 2003 ER -