TY - JOUR A1 - Schiffer, Stefan A1 - Ferrein, Alexander T1 - Decision-Theoretic Planning with Fuzzy Notions in GOLOG JF - International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems N2 - In this paper we present an extension of the action language Golog that allows for using fuzzy notions in non-deterministic argument choices and the reward function in decision-theoretic planning. Often, in decision-theoretic planning, it is cumbersome to specify the set of values to pick from in the non-deterministic-choice-of-argument statement. Also, even for domain experts, it is not always easy to specify a reward function. Instead of providing a finite domain for values in the non-deterministic-choice-of-argument statement in Golog, we now allow for stating the argument domain by simply providing a formula over linguistic terms and fuzzy uents. In Golog’s forward-search DT planning algorithm, these formulas are evaluated in order to find the agent’s optimal policy. We illustrate this in the Diner Domain where the agent needs to calculate the optimal serving order. Y1 - 2016 U6 - https://doi.org/10.1142/S0218488516400134 SN - 1793-6411 VL - 24 IS - Issue Suppl. 2 SP - 123 EP - 143 PB - World Scientific CY - Singapur ER - TY - JOUR A1 - Ferrein, Alexander A1 - Steinbauer, Gerald T1 - The Interplay of Aldebaran and RoboCup JF - KI - Künstliche Intelligenz Y1 - 2016 U6 - https://doi.org/10.1007/s13218-016-0440-1 SN - 1610-1987 VL - 30 IS - 3-4 SP - 325 EP - 326 PB - Springer CY - Berlin ER - TY - JOUR A1 - Schopp, Christoph A1 - Doll, Timo A1 - Gräser, Ulrich A1 - Harzheim, Thomas A1 - Heuermann, Holger A1 - Kling, Rainer A1 - Marso, Michael T1 - Capacitively Coupled High-Pressure Lamp Using Coaxial Line Networks JF - IEEE Transactions on Microwave Theory and Techniques N2 - This paper describes the development of a capacitively coupled high-pressure lamp with input power between 20 and 43 W at 2.45 GHz, using a coaxial line network. Compared with other electrodeless lamp systems, no cavity has to be used and a reduction in the input power is achieved. Therefore, this lamp is an alternative to the halogen incandescent lamp for domestic lighting. To serve the demands of domestic lighting, the filling of the lamp is optimized over all other resulting requirements, such as high efficacy at low induced powers and fast startups. A workflow to develop RF-driven plasma applications is presented, which makes use of the hot S-parameter technique. Descriptions of the fitting process inside a circuit and FEM simulator are given. Results of the combined ignition and operation network from simulations and measurements are compared. An initial prototype is built and measurements of the lamp's lighting properties are presented along with an investigation of the efficacy optimizations using large signal amplitude modulation. With this lamp, an efficacy of 135 lmW -1 is achieved. Y1 - 2016 U6 - https://doi.org/10.1109/TMTT.2016.2600326 SN - 0018-9480 VL - 64 IS - 10 SP - 3363 EP - 3368 PB - IEEE CY - New York, NY ER - TY - JOUR A1 - Steinbauer, Gerald A1 - Ferrein, Alexander T1 - 20 Years of RoboCup JF - KI - Künstliche Intelligenz Y1 - 2016 U6 - https://doi.org/10.1007/s13218-016-0442-z SN - 1610-1987 VL - 30 IS - 3-4 SP - 221 EP - 224 PB - Springer CY - Berlin ER -