TY - CHAP A1 - Waldmann, Christoph A1 - Vera, Jean-Pierre de A1 - Dachwald, Bernd A1 - Strasdeit, Henry A1 - Sohl, Frank A1 - Hanff, Hendrik A1 - Kowalski, Julia A1 - Heinen, Dirk A1 - Macht, Sabine A1 - Bestmann, Ulf A1 - Meckel, Sebastian A1 - Hildebrandt, Marc A1 - Funke, Oliver A1 - Gehrt, Jan-Jöran T1 - Search for life in ice-covered oceans and lakes beyond Earth T2 - 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761 N2 - The quest for life on other planets is closely connected with the search for water in liquid state. Recent discoveries of deep oceans on icy moons like Europa and Enceladus have spurred an intensive discussion about how these waters can be accessed. The challenge of this endeavor lies in the unforeseeable requirements on instrumental characteristics both with respect to the scientific and technical methods. The TRIPLE/nanoAUV initiative is aiming at developing a mission concept for exploring exo-oceans and demonstrating the achievements in an earth-analogue context, exploring the ocean under the ice shield of Antarctica and lakes like Dome-C on the Antarctic continent. KW - Planetary exploration KW - Jupiter KW - ice moons KW - underwater vehicle KW - Antarctica Y1 - 2018 U6 - http://dx.doi.org/10.1109/AUV.2018.8729761 ER - TY - JOUR A1 - Rittweger, Jörn A1 - Albracht, Kirsten A1 - Flück, Martin A1 - Ruoss, Severin A1 - Brocca, Lorenza A1 - Longa, Emanuela A1 - Moriggi, Manuela A1 - Seynnes, Olivier A1 - Di Giulio, Irene A1 - Tenori, Leonardo A1 - Vignoli, Alessia A1 - Capri, Miriam A1 - Gelfi, Cecilia A1 - Luchinat, Claudio A1 - Franceschi, Claudio A1 - Bottinelli, Roberto A1 - Cerretelli, Paolo A1 - Narici, Marco T1 - Sarcolab pilot study into skeletal muscle’s adaptation to longterm spaceflight JF - npj Microgravity Y1 - 2018 U6 - http://dx.doi.org/10.1038/s41526-018-0052-1 SN - 2373-8065 VL - 4 IS - 1 SP - 1 EP - 9 PB - Nature Portfolio ER - TY - JOUR A1 - Ciritsis, Alexander A1 - Horbach, Andreas A1 - Staat, Manfred A1 - Kuhl, Christiane K. A1 - Kraemer, Nils Andreas T1 - Porosity and tissue integration of elastic mesh implants evaluated in vitro and in vivo JF - Journal of Biomedical Materials Research: Part B: Applied Biomaterials N2 - Purpose In vivo, a loss of mesh porosity triggers scar tissue formation and restricts functionality. The purpose of this study was to evaluate the properties and configuration changes as mesh deformation and mesh shrinkage of a soft mesh implant compared with a conventional stiff mesh implant in vitro and in a porcine model. Material and Methods Tensile tests and digital image correlation were used to determine the textile porosity for both mesh types in vitro. A group of three pigs each were treated with magnetic resonance imaging (MRI) visible conventional stiff polyvinylidene fluoride meshes (PVDF) or with soft thermoplastic polyurethane meshes (TPU) (FEG Textiltechnik mbH, Aachen, Germany), respectively. MRI was performed with a pneumoperitoneum at a pressure of 0 and 15 mmHg, which resulted in bulging of the abdomen. The mesh-induced signal voids were semiautomatically segmented and the mesh areas were determined. With the deformations assessed in both mesh types at both pressure conditions, the porosity change of the meshes after 8 weeks of ingrowth was calculated as an indicator of preserved elastic properties. The explanted specimens were examined histologically for the maturity of the scar (collagen I/III ratio). Results In TPU, the in vitro porosity increased constantly, in PVDF, a loss of porosity was observed under mild stresses. In vivo, the mean mesh areas of TPU were 206.8 cm2 (± 5.7 cm2) at 0 mmHg pneumoperitoneum and 274.6 cm2 (± 5.2 cm2) at 15 mmHg; for PVDF the mean areas were 205.5 cm2 (± 8.8 cm2) and 221.5 cm2 (± 11.8 cm2), respectively. The pneumoperitoneum-induced pressure increase resulted in a calculated porosity increase of 8.4% for TPU and of 1.2% for PVDF. The mean collagen I/III ratio was 8.7 (± 0.5) for TPU and 4.7 (± 0.7) for PVDF. Conclusion The elastic properties of TPU mesh implants result in improved tissue integration compared to conventional PVDF meshes, and they adapt more efficiently to the abdominal wall. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 827–833, 2018. Y1 - 2018 U6 - http://dx.doi.org/10.1002/jbm.b.33877 SN - 1552-4981 VL - 106 IS - 2 SP - 827 EP - 833 PB - Wiley CY - New York, NY ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Fernandes, P.R. ED - Tavares, J. M. T1 - Pectopexy to repair vaginal vault prolapse: a finite element approach T2 - Proceedings CMBBE 2018 N2 - The vaginal prolapse after hysterectomy (removal of the uterus) is often associated with the prolapse of the vaginal vault, rectum, bladder, urethra or small bowel. Minimally invasive surgery such as laparoscopic sacrocolpopexy and pectopexy are widely performed for the treatment of the vaginal prolapse with weakly supported vaginal vault after hysterectomy using prosthetic mesh implants to support (or strengthen) lax apical ligaments. Implants of different shape, size and polymers are selected depending on the patient’s anatomy and the surgeon’s preference. In this computational study on pectopexy, DynaMesh®-PRP soft, GYNECARE GYNEMESH® PS Nonabsorbable PROLENE® soft and Ultrapro® are tested in a 3D finite element model of the female pelvic floor. The mesh model is implanted into the extraperitoneal space and sutured to the vaginal stump with a bilateral fixation to the iliopectineal ligament at both sides. Numerical simulations are conducted at rest, after surgery and during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues and prosthetic meshes are modeled as incompressible, isotropic hyperelastic materials. The positions of the organs are calculated with respect to the pubococcygeal line (PCL) for female pelvic floor at rest, after repair and during Valsalva maneuver using the three meshes. Y1 - 2018 N1 - 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization. CMBBE 2018. 26-29 March 2018, Lisbon, Portugal ER - TY - JOUR A1 - Horbach, Andreas A1 - Staat, Manfred T1 - Optical strain measurement for the modeling of surgical meshes and their porosity JF - Current Directions in Biomedical Engineering N2 - The porosity of surgical meshes makes them flexible for large elastic deformation and establishes the healing conditions of good tissue in growth. The biomechanic modeling of orthotropic and compressible materials requires new materials models and simulstaneoaus fit of deformation in the load direction as well as trannsversely to to load. This nonlinear modeling can be achieved by an optical deformation measurement. At the same time the full field deformation measurement allows the dermination of the change of porosity with deformation. Also the socalled effective porosity, which has been defined to asses the tisssue interatcion with the mesh implants, can be determined from the global deformation of the surgical meshes. Y1 - 2018 U6 - http://dx.doi.org/10.1515/cdbme-2018-0045 SN - 2364-5504 VL - Band 4 IS - 1 SP - 181 EP - 184 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Albanna, Walid A1 - Kotliar, Konstantin A1 - Lüke, Jan Niklas A1 - Alpdogan, Serdar A1 - Conzen, Catharina A1 - Lindauer, Ute A1 - Clusmann, Hans A1 - Hescheler, Jürgen A1 - Vilser, Walthard A1 - Schneider, Toni A1 - Schubert, Gerrit Alexander T1 - Non-invasive evaluation of neurovascular coupling in the murine retina by dynamic retinal vessel analysis JF - Plos one N2 - Background Impairment of neurovascular coupling (NVC) was recently reported in the context of subarachnoid hemorrhage and may correlate with disease severity and outcome. However, previous techniques to evaluate NVC required invasive procedures. Retinal vessels may represent an alternative option for non-invasive assessment of NVC. Methods A prototype of an adapted retinal vessel analyzer was used to assess retinal vessel diameter in mice. Dynamic vessel analysis (DVA) included an application of monochromatic flicker light impulses in predefined frequencies for evaluating NVC. All retinae were harvested after DVA and electroretinograms were performed. Results A total of 104 retinal scans were conducted in 21 male mice (90 scans). Quantitative arterial recordings were feasible only in a minority of animals, showing an emphasized reaction to flicker light impulses (8 mice; 14 scans). A characteristic venous response to flicker light, however, could observed in the majority of animals. Repeated measurements resulted in a significant decrease of baseline venous diameter (7 mice; 7 scans, p < 0.05). Ex-vivo electroretinograms, performed after in-vivo DVA, demonstrated a significant reduction of transretinal signaling in animals with repeated DVA (n = 6, p < 0.001). Conclusions To the best of our knowledge, this is the first non-invasive study assessing murine retinal vessel response to flicker light with characteristic changes in NVC. The imaging system can be used for basic research and enables the investigation of retinal vessel dimension and function in control mice and genetically modified animals. Y1 - 2018 U6 - http://dx.doi.org/10.1371/journal.pone.0204689 VL - 13 IS - 10 PB - PLOS CY - San Francisco ER - TY - JOUR A1 - Bhattarai, Aroj A1 - Staat, Manfred T1 - Modelling of Soft Connective Tissues to Investigate Female Pelvic Floor Dysfunctions JF - Computational and Mathematical Methods in Medicine N2 - After menopause, decreased levels of estrogen and progesterone remodel the collagen of the soft tissues thereby reducing their stiffness. Stress urinary incontinence is associated with involuntary urine leakage due to pathological movement of the pelvic organs resulting from lax suspension system, fasciae, and ligaments. This study compares the changes in the orientation and position of the female pelvic organs due to weakened fasciae, ligaments, and their combined laxity. A mixture theory weighted by respective volume fraction of elastin-collagen fibre compound (5%), adipose tissue (85%), and smooth muscle (5%) is adopted to characterize the mechanical behaviour of the fascia. The load carrying response (other than the functional response to the pelvic organs) of each fascia component, pelvic organs, muscles, and ligaments are assumed to be isotropic, hyperelastic, and incompressible. Finite element simulations are conducted during Valsalva manoeuvre with weakened tissues modelled by reduced tissue stiffness. A significant dislocation of the urethrovesical junction is observed due to weakness of the fascia (13.89 mm) compared to the ligaments (5.47 mm). The dynamics of the pelvic floor observed in this study during Valsalva manoeuvre is associated with urethral-bladder hypermobility, greater levator plate angulation, and positive Q-tip test which are observed in incontinent females. Y1 - 2018 U6 - http://dx.doi.org/10.1155/2018/9518076 SN - 1748-6718 VL - 2018 IS - Article ID 9518076 SP - 1 EP - 16 PB - Hindawi CY - New York, NY ER - TY - CHAP A1 - Digel, Ilya A1 - Akimbekov, Nuraly Sh. A1 - Kistaubayeva, Aida A1 - Zhubanova, Azhar A. ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Microbial Sampling from Dry Surfaces: Current Challenges and Solutions T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Sampling of dry surfaces for microorganisms is a main component of microbiological safety and is of critical importance in many fields including epidemiology, astrobiology as well as numerous branches of medical and food manufacturing. Aspects of biofilm formation, analysis and removal in aqueous solutions have been thoroughly discussed in literature. In contrast, microbial communities on air-exposed (dry) surfaces have received significantly less attention. Diverse surface sampling methods have been developed in order to address various surfaces and microbial groups, but they notoriously show poor repeatability, low recovery rates and suffer from lack of mutual consistency. Quantitative sampling for viable microorganisms represents a particular challenge, especially on porous and irregular surfaces. Therefore, it is essential to examine in depth the factors involved in microorganisms’ recovery efficiency and accuracy depending on the sampling technique used. Microbial colonization, retention and community composition on different dry surfaces are very complex and rely on numerous physicochemical and biological factors. This study is devoted to analyze and review the (a) physical phenomena and intermolecular forces relevant for microbiological surface sampling; (b) challenges and problems faced by existing sampling methods for viable microorganisms and (c) current directions of engineering and research aimed at improvement of quality and efficiency of microbiological surface sampling. KW - Sampling methods KW - Surface microorganisms KW - Dry surfaces KW - Microbial adhesion KW - Swabbing Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_19 SP - 421 EP - 456 PB - Springer CY - Singapore ER - TY - CHAP A1 - Bhattarai, Aroj A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Mechanics of soft tissue reactions to textile mesh implants T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - For pelvic floor disorders that cannot be treated with non-surgical procedures, minimally invasive surgery has become a more frequent and safer repair procedure. More than 20 million prosthetic meshes are implanted each year worldwide. The simple selection of a single synthetic mesh construction for any level and type of pelvic floor dysfunctions without adopting the design to specific requirements increase the risks for mesh related complications. Adverse events are closely related to chronic foreign body reaction, with enhanced formation of scar tissue around the surgical meshes, manifested as pain, mesh erosion in adjacent structures (with organ tissue cut), mesh shrinkage, mesh rejection and eventually recurrence. Such events, especially scar formation depend on effective porosity of the mesh, which decreases discontinuously at a critical stretch when pore areas decrease making the surgical reconstruction ineffective that further augments the re-operation costs. The extent of fibrotic reaction is increased with higher amount of foreign body material, larger surface, small pore size or with inadequate textile elasticity. Standardized studies of different meshes are essential to evaluate influencing factors for the failure and success of the reconstruction. Measurements of elasticity and tensile strength have to consider the mesh anisotropy as result of the textile structure. An appropriate mesh then should show some integration with limited scar reaction and preserved pores that are filled with local fat tissue. This chapter reviews various tissue reactions to different monofilament mesh implants that are used for incontinence and hernia repairs and study their mechanical behavior. This helps to predict the functional and biological outcomes after tissue reinforcement with meshes and permits further optimization of the meshes for the specific indications to improve the success of the surgical treatment. Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_11 SP - 251 EP - 275 PB - Springer CY - Singapore ER - TY - CHAP A1 - Richter, Charlotte A1 - Braunstein, Bjoern A1 - Stäudle, Benjamin A1 - Attias, Julia A1 - Suess, Alexander A1 - Weber, T. A1 - Rittweger, Joern A1 - Green, David A. A1 - Albracht, Kirsten T1 - In vivo fascicle length of the gastrocnemius muscle during walking in simulated martian gravity using two different body weight support devices T2 - 23rd Annual Congress of the European College of Sport Science, Dublin, Irland Y1 - 2018 ER - TY - CHAP A1 - Duong, Minh Tuan A1 - Seifarth, Volker A1 - Temiz Artmann, Aysegül A1 - Artmann, Gerhard A1 - Staat, Manfred ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Growth Modelling Promoting Mechanical Stimulation of Smooth Muscle Cells of Porcine Tubular Organs in a Fibrin-PVDF Scaffold T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Reconstructive surgery and tissue replacements like ureters or bladders reconstruction have been recently studied, taking into account growth and remodelling of cells since living cells are capable of growing, adapting, remodelling or degrading and restoring in order to deform and respond to stimuli. Hence, shapes of ureters or bladders and their microstructure change during growth and these changes strongly depend on external stimuli such as training. We present the mechanical stimulation of smooth muscle cells in a tubular fibrin-PVDFA scaffold and the modelling of the growth of tissue by stimuli. To this end, mechanotransduction was performed with a kyphoplasty balloon catheter that was guided through the lumen of the tubular structure. The bursting pressure was examined to compare the stability of the incubated tissue constructs. The results showed the significant changes on tissues with training by increasing the burst pressure as a characteristic mechanical property and the smooth muscle cells were more oriented with uniformly higher density. Besides, the computational growth models also exhibited the accurate tendencies of growth of the cells under different external stimuli. Such models may lead to design standards for the better layered tissue structure in reconstructing of tubular organs characterized as composite materials such as intestines, ureters and arteries. KW - Mechanical simulation KW - Growth modelling KW - Ureter KW - Bladder KW - Reconstruction Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_9 SP - 209 EP - 232 PB - Springer CY - Singapore ER - TY - CHAP A1 - Artmann, Gerhard A1 - Meruvu, Haritha A1 - Kizildag, Sefa A1 - Temiz Artmann, Aysegül ED - Artmann, Gerhard ED - Temiz Artmann, Aysegül ED - Zhubanova, Azhar A. ED - Digel, Ilya T1 - Functional Toxicology and Pharmacology Test of Cell Induced Mechanical Tensile Stress in 2D and 3D Tissue Cultures T2 - Biological, Physical and Technical Basics of Cell Engineering N2 - Mechanical forces/tensile stresses are critical determinants of cellular growth, differentiation and migration patterns in health and disease. The innovative “CellDrum technology” was designed for measuring mechanical tensile stress of cultured cell monolayers/thin tissue constructs routinely. These are cultivated on very thin silicone membranes in the so-called CellDrum. The cell layers adhere firmly to the membrane and thus transmit the cell forces generated. A CellDrum consists of a cylinder which is sealed from below with a 4 μm thick, biocompatible, functionalized silicone membrane. The weight of cell culture medium bulbs the membrane out downwards. Membrane indentation is measured. When cells contract due to drug action, membrane, cells and medium are lifted upwards. The induced indentation changes allow for lateral drug induced mechanical tension quantification of the micro-tissues. With hiPS-induced (human) Cardiomyocytes (CM) the CellDrum opens new perspectives of individualized cardiac drug testing. Here, monolayers of self-beating hiPS-CMs were grown in CellDrums. Rhythmic contractions of the hiPS-cells induce membrane up-and-down deflections. The recorded cycles allow for single beat amplitude, single beat duration, integration of the single beat amplitude over the beat time and frequency analysis. Dose effects of agonists and antagonists acting on Ca2+ channels were sensitively and highly reproducibly observed. Data were consistent with published reference data as far as they were available. The combination of the CellDrum technology with hiPS-Cardiomyocytes offers a fast, facile and precise system for pharmacological and toxicological studies. It allows new preclinical basic as well as applied research in pharmacolgy and toxicology. Y1 - 2018 SN - 978-981-10-7904-7 U6 - http://dx.doi.org/10.1007/978-981-10-7904-7_7 SP - 157 EP - 192 PB - Springer CY - Singapore ER - TY - JOUR A1 - Lapitan, Denis G. A1 - Rogatkin, Dmitrii A. A1 - Persheyev, Sydulla K. A1 - Kotliar, Konstantin T1 - False spectra formation in the differential two-channel scheme of the laser Doppler flowmeter JF - Biomedizinische Technik N2 - Noise in the differential two-channel scheme of a classic laser Doppler flowmetry (LDF) instrument was studied. Formation of false spectral components in the output signal due to beating of electrical signals in the differential amplifier was found out. The improved block-diagram of the flowmeter was developed allowing to reduce the noise. Y1 - 2018 U6 - http://dx.doi.org/10.1515/bmt-2017-0060 SN - 0013-5585 VL - 63 IS - 4 SP - 439 EP - 444 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Heinke, Lars N. A1 - Knicker, Axel J. A1 - Albracht, Kirsten T1 - Evaluation of passively induced shoulder stretch reflex using an isokinetic dynamometer in male overhead athletes JF - Isokinetics and Exercise Science N2 - BACKGROUND: Muscle stretch reflexes are widely considered to beneficially influence joint stability and power generation in the lower limbs. While in the upper limbs and especially in the muscles surrounding the shoulder joint such evidence is lacking. OBJECTIVE: To quantify the electromyographical response in the muscles crossing the shoulder of specifically trained overhead athletes to an anterior perturbation force. METHODS: Twenty healthy male participants performed six sets of different external shoulder rotation stretches on an isokinetic dynamometer over a range of amplitudes and muscle pre-activation moment levels. All stretches were applied with a dynamometer acceleration of 10,000∘/s2 and a velocity of 150∘/s. Electromyographical response was measured via sEMG. RESULTS: Consistent reflexes were not observed in all experimental conditions. The reflex latencies revealed a significant muscle main effect (F (2,228) = 99.31, p< 0.001; η2= 0.466; f= 0.934) and a pre-activation main effect (F (1,228) = 142.21, p< 0.001; η2= 0.384; f= 1.418). The stretch reflex amplitude yielded a significant pre-activation main effect (F (1,222) = 470.373, p< 0.001; η2= 0.679; f= 1.454). CONCLUSION: Short latency muscle reflexes showed a tendency to an anterior to posterior muscle recruitment whereby the main internal rotator muscles of the shoulder revealed the most consistent results. Y1 - 2018 U6 - http://dx.doi.org/10.3233/IES-184111 SN - 1878-5913 VL - 26 IS - 4 SP - 265 EP - 274 PB - IOS Press CY - Amsterdam ER - TY - CHAP A1 - Jung, Alexander A1 - Frotscher, Ralf A1 - Staat, Manfred T1 - Electromechanical model of hiPSC-derived ventricular cardiomyocytes cocultured with fibroblasts T2 - 6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK N2 - The CellDrum provides an experimental setup to study the mechanical effects of fibroblasts co-cultured with hiPSC-derived ventricular cardiomyocytes. Multi-scale computational models based on the Finite Element Method are developed. Coupled electrical cardiomyocyte-fibroblast models (cell level) are embedded into reaction-diffusion equations (tissue level) which compute the propagation of the action potential in the cardiac tissue. Electromechanical coupling is realised by an excitation-contraction model (cell level) and the active stress arising during contraction is added to the passive stress in the force balance, which determines the tissue displacement (tissue level). Tissue parameters in the model can be identified experimentally to the specific sample. Y1 - 2018 ER - TY - CHAP A1 - Grundmann, Jan Thimo A1 - Bauer, Waldemar A1 - Biele, Jens A1 - Boden, Ralf A1 - Ceriotti, Matteo A1 - Cordero, Federico A1 - Dachwald, Bernd A1 - Dumont, Etienne A1 - Grimm, Christian A1 - Herčík, David A1 - Herique, Alain A1 - Ho, Tra-Mi A1 - Jahnke, Rico A1 - Koch, Aaron A1 - Kofman, Wlodek A1 - Koncz, Alexander A1 - Krause, Christian A1 - Lange, Caroline A1 - Lichtenheldt, Roy A1 - Maiwald, Volker A1 - Mikschl, Tobias A1 - Mikulz, Eugen A1 - Montenegro, Sergio A1 - Pelivan, Ivanka A1 - Peloni, Alessandro A1 - Plettemeier, Dirk A1 - Quantius, Dominik A1 - Reershemius, Siebo A1 - Renger, Thomas A1 - Riemann, Johannes A1 - Ruffer, Michael A1 - Sasaki, Kaname A1 - Schmitz, Nicole A1 - Seboldt, Wolfgang A1 - Seefeldt, Patric A1 - Spietz, Peter A1 - Spröwitz, Tom A1 - Sznajder, Maciej A1 - Tardivel, Simon A1 - Toth, Norbert A1 - Wejmo, Elisabet A1 - Wolff, Friederike A1 - Ziach, Christian T1 - Efficient massively parallel prospection for ISRU by multiple near-earth asteroid rendezvous using near-term solar sails and'now-term'small spacecraft solutions T2 - 2nd Asteroid Science Intersections with In-Space Mine Engineering – ASIME 2018 N2 - Physical interaction with small solar system bodies (SSSB) is key for in-situ resource utilization (ISRU). The design of mining missions requires good understanding of SSSB properties, including composition, surface and interior structure, and thermal environment. But as the saying goes "If you've seen one asteroid, you've seen one Asteroid": Although some patterns may begin to appear, a stable and reliable scheme of SSSB classification still has to be evolved. Identified commonalities would enable generic ISRU technology and spacecraft design approaches with a high degree of re-use. Strategic approaches require much broader in-depth characterization of the SSSB populations of interest to the ISRU community. The DLR-ESTEC GOSSAMER Roadmap Science Working Groups identified target-flexible Multiple Near-Earth asteroid (NEA) Rendezvous (MNR) as one of the missions only feasible with solar sail propulsion, showed the ability to access any inclination and a wide range of heliocentric distances as well as continuous operation close to Earth's orbit where low delta-v objects reside. Y1 - 2018 N1 - 2nd Asteroid Science Intersections with In-Space Mine Engineering – ASIME 2018 16-17 April 2018, Belval, Luxembourg SP - 1 EP - 33 ER - TY - JOUR A1 - Werkhausen, Amelie A1 - Albracht, Kirsten A1 - Cronin, Neil J A1 - Paulsen, Gøran A1 - Bojsen-Møller, Jens A1 - Seynnes, Olivier R T1 - Effect of training-induced changes in achilles tendon stiffness on muscle-tendon behavior during landing JF - Frontiers in physiology N2 - During rapid deceleration of the body, tendons buffer part of the elongation of the muscle-tendon unit (MTU), enabling safe energy dissipation via eccentric muscle contraction. Yet, the influence of changes in tendon stiffness within the physiological range upon these lengthening contractions is unknown. This study aimed to examine the effect of training-induced stiffening of the Achilles tendon on triceps surae muscle-tendon behavior during a landing task. Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric plantarflexion (n = 11) or to a non-training control group (n = 10). Before and after the training period, plantarflexion force, peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ultrasound and kinematics data. Additionally, testing included a step-landing task, during which joint mechanics and lengths of gastrocnemius and soleus fascicles, Achilles tendon, and MTU were determined using synchronized ultrasound, kinematics and kinetics data collection. After training, plantarflexion strength and Achilles tendon stiffness increased (15 and 18%, respectively), and tendon strain during landing remained similar. Likewise, lengthening and negative work produced by the gastrocnemius MTU did not change detectably. However, in the training group, gastrocnemius fascicle length was offset (8%) to a longer length at touch down and, surprisingly, fascicle lengthening and velocity were reduced by 27 and 21%, respectively. These changes were not observed for soleus fascicles when accounting for variation in task execution between tests. These results indicate that a training-induced increase in tendon stiffness does not noticeably affect the buffering action of the tendon when the MTU is rapidly stretched. Reductions in gastrocnemius fascicle lengthening and lengthening velocity during landing occurred independently from tendon strain. Future studies are required to provide insight into the mechanisms underpinning these observations and their influence on energy dissipation. KW - achilles tendon KW - energy absorption KW - energy dissipation KW - mechanical buffer KW - stiffness Y1 - 2018 U6 - http://dx.doi.org/10.3389/fphys.2018.00794 SN - 1664-042X IS - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Matthies, Hermann G. A1 - Stavroulakis, Georgios Eleftherios A1 - Staat, Manfred T1 - Direct plastic structural design by chance constrained programming T2 - 6th European Conference on Computational Mechanics (ECCM 6), 7th European Conference on Computational Fluid Dynamics (ECFD 7), 11-15 June 2018, Glasgow, UK N2 - We propose a stochastic programming method to analyse limit and shakedown of structures under random strength with lognormal distribution. In this investigation a dual chance constrained programming algorithm is developed to calculate simultaneously both the upper and lower bounds of the plastic collapse limit or the shakedown limit. The edge-based smoothed finite element method (ES-FEM) using three-node linear triangular elements is used. Y1 - 2018 ER - TY - JOUR A1 - Jung, Alexander A1 - Staat, Manfred A1 - Müller, Wolfram T1 - Corrigendum to “Flight style optimization in ski jumping on normal, large, and ski flying hills” [J. Biomech 47 (2014) 716–722] JF - Journals of Biomechanics Y1 - 2018 U6 - http://dx.doi.org/10.1016/j.jbiomech.2018.02.001 SN - 0021-9290 N1 - refers to Journal of Biomechanics Vol 47, Issue 3, Pages 716-722: https://doi.org/10.1016/j.jbiomech.2013.11.021 SP - 313 PB - Elsevier CY - Amsterdam ER - TY - THES A1 - Bhattarai, Aroj T1 - Constitutive modeling of female pelvic floor dysfunctions and reconstructive surgeries using prosthetic mesh implants Y1 - 2018 SN - 978-3-9818074-8-6 U6 - http://dx.doi.org/10.17185/duepublico/70340 N1 - Duisburg-Essen, Univ., Diss., 2018 ER -