TY - JOUR A1 - Kahmann, Stephanie L. A1 - Rausch, Valentin A1 - Plümer, Jonathan A1 - Müller, Lars P. A1 - Pieper, Martin A1 - Wegmann, Kilian T1 - The automized fracture edge detection and generation of three-dimensional fracture probability heat maps JF - Medical Engineering & Physics N2 - With proven impact of statistical fracture analysis on fracture classifications, it is desirable to minimize the manual work and to maximize repeatability of this approach. We address this with an algorithm that reduces the manual effort to segmentation, fragment identification and reduction. The fracture edge detection and heat map generation are performed automatically. With the same input, the algorithm always delivers the same output. The tool transforms one intact template consecutively onto each fractured specimen by linear least square optimization, detects the fragment edges in the template and then superimposes them to generate a fracture probability heat map. We hypothesized that the algorithm runs faster than the manual evaluation and with low (< 5 mm) deviation. We tested the hypothesis in 10 fractured proximal humeri and found that it performs with good accuracy (2.5 mm ± 2.4 mm averaged Euclidean distance) and speed (23 times faster). When applied to a distal humerus, a tibia plateau, and a scaphoid fracture, the run times were low (1–2 min), and the detected edges correct by visual judgement. In the geometrically complex acetabulum, at a run time of 78 min some outliers were considered acceptable. An automatically generated fracture probability heat map based on 50 proximal humerus fractures matches the areas of high risk of fracture reported in medical literature. Such automation of the fracture analysis method is advantageous and could be extended to reduce the manual effort even further. KW - Fracture classification KW - Shoulder KW - Probability distribution mapping KW - Morphing KW - Imaging Y1 - 2022 SN - 1350-4533 VL - 2022 IS - 110 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Marinkovic, Marko A1 - Butenweg, Christoph T1 - Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames JF - Engineering Structures N2 - Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill’s and frame’s geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames. KW - Seismic loading KW - Earthquake KW - In-plane performance, isolation KW - Infill wall design KW - Numerical modelling Y1 - 2022 U6 - https://doi.org/10.1016/j.engstruct.2022.114959 SN - 0141-0296 VL - 272 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Blanke, Tobias A1 - Schmidt, Katharina S. A1 - Göttsche, Joachim A1 - Döring, Bernd A1 - Frisch, Jérôme A1 - van Treeck, Christoph ED - Weidlich, Anke ED - Neumann, Dirk ED - Gust, Gunther ED - Staudt, Philipp ED - Schäfer, Mirko T1 - Time series aggregation for energy system design: review and extension of modelling seasonal storages T2 - Energy Informatics N2 - Using optimization to design a renewable energy system has become a computationally demanding task as the high temporal fluctuations of demand and supply arise within the considered time series. The aggregation of typical operation periods has become a popular method to reduce effort. These operation periods are modelled independently and cannot interact in most cases. Consequently, seasonal storage is not reproducible. This inability can lead to a significant error, especially for energy systems with a high share of fluctuating renewable energy. The previous paper, “Time series aggregation for energy system design: Modeling seasonal storage”, has developed a seasonal storage model to address this issue. Simultaneously, the paper “Optimal design of multi-energy systems with seasonal storage” has developed a different approach. This paper aims to review these models and extend the first model. The extension is a mathematical reformulation to decrease the number of variables and constraints. Furthermore, it aims to reduce the calculation time while achieving the same results. KW - Energy system KW - Renewable energy KW - Mixed integer linear programming (MILP) KW - Typical periods KW - Time-series aggregation Y1 - 2022 U6 - https://doi.org/10.1186/s42162-022-00208-5 SN - 2520-8942 N1 - 11th DACH+ Conference on Energy Informatics, 15-16 September 2022, Freiburg, Germany VL - 5 IS - 1, Article number: 17 PB - Springer Nature ER - TY - CHAP A1 - Pütz, Sebastian A1 - Baier, Ralph A1 - Brauner, Philipp A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - Liehner, Luca A1 - Mertens, Alexander A1 - Rodemann, Niklas A1 - Schneider, Sebastian A1 - Schollemann, Alexander A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank T. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena T1 - An interdisciplinary view on humane interfaces for digital shadows in the internet of production T2 - 2022 15th International Conference on Human System Interaction (HSI) N2 - Digital shadows play a central role for the next generation industrial internet, also known as Internet of Production (IoP). However, prior research has not considered systematically how human actors interact with digital shadows, shaping their potential for success. To address this research gap, we assembled an interdisciplinary team of authors from diverse areas of human-centered research to propose and discuss design and research recommendations for the implementation of industrial user interfaces for digital shadows, as they are currently conceptualized for the IoP. Based on the four use cases of decision support systems, knowledge sharing in global production networks, human-robot collaboration, and monitoring employee workload, we derive recommendations for interface design and enhancing workers’ capabilities. This analysis is extended by introducing requirements from the higher-level perspectives of governance and organization. KW - digital twin KW - digital shadow KW - cyber-physical production system KW - human-machine interface Y1 - 2022 SN - 978-1-6654-6823-7 (Print) SN - 978-1-6654-6822-0 (Online) U6 - https://doi.org/10.1109/HSI55341.2022.9869467 SN - 2158-2246 (Print) SN - 2158-2254 (Online) N1 - 15th International Conference on Human System Interaction (HSI), 28-31 July 2022, Melbourne, Australia. PB - IEEE ER - TY - CHAP A1 - Riga, Evi A1 - Pitilakis, Kyriazis A1 - Butenweg, Christoph A1 - Apostolaki, Stefania A1 - Karatzetzou, Anna ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Investigating the impact of the new European Seismic Hazard Model ESHM20 on the seismic design and safety control of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - The seismic performance and safety of major European industrial facilities has a global interest for Europe, its citizens and economy. A potential major disaster at an industrial site could affect several countries, probably far beyond the country where it is located. However, the seismic design and safety assessment of these facilities is practically based on national, often outdated seismic hazard assessment studies, due to many reasons, including the absence of a reliable, commonly developed seismic hazard model for whole Europe. This important gap is no more existing, as the 2020 European Seismic Hazard Model ESHM20 was released in December 2021. In this paper we investigate the expected impact of the adoption of ESHM20 on the seismic demand for industrial facilities, through the comparison of the ESHM20 probabilistic hazard at the sites where industrial facilities are located with the respective national and European regulations. The goal of this preliminary work in the framework of Working Group 13 of the European Association for Earthquake Engineering (EAEE), is to identify potential inadequacies in the design and safety control of existing industrial facilities and to highlight the expected impact of the adoption of the new European Seismic Hazard Model on the design of new industrial facilities and the safety assessment of existing ones. KW - ESHM20, industrial facilities KW - seismic hazard KW - seismic design KW - safety control Y1 - 2022 SN - 978-973-100-533-1 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 3261 EP - 3270 ER - TY - CHAP A1 - Milijaš, Aleksa A1 - Šakić, Bogdan A1 - Marinković, Marko A1 - Butenweg, Christoph A1 - Gams, Matija A1 - Klinkel, Sven ED - Arion, Cristian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Effects of prior in-plane damage on out-of-plane response of masonry infills with openings T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - Masonry infill walls are the most traditional enclosure system that is still widely used in RC frame buildings all over the world, particularly in seismic active regions. Although infill walls are usually neglected in seismic design, during an earthquake event they are subjected to in-plane and out-of-plane forces that can act separately or simultaneously. Since observations of damage to buildings after recent earthquakes showed detrimental effects of in-plane and out-of-plane load interaction on infill walls, the number of studies that focus on influence of in-plane damage on out-of-plane response has significantly increased. However, most of the xperimental campaigns have considered only solid infills and there is a lack of combined in-plane and out-of-plane experimental tests on masonry infills with openings, although windows and doors strongly affect seismic performance. In this paper, two types of experimental tests on infills with window openings are presented. The first is a pure out-of-plane test and the second one is a sequential in-plane and out-of-plane test aimed at investigating the effects of existing in-plane damage on outof-plane response. Additionally, findings from two tests with similar load procedure that were carried out on fully infilled RC frames in the scope of the same project are used for comparison. Test results clearly show that window opening increased vulnerability of infills to combined seismic actions and that prevention of damage in infills with openings is of the utmost importance for seismic safety. KW - Seismic loading KW - In-plane load KW - Out-of-plane load KW - Interaction KW - Window opening Y1 - 2022 SN - 978-973-100-533-1 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 2747 EP - 2756 ER - TY - CHAP A1 - Morandi, Paolo A1 - Butenweg, Christoph A1 - Breis, Khaled A1 - Beyer, Katrin A1 - Magenes, Guido ED - Arion, Christian ED - Scupin, Alexandra ED - Ţigănescu, Alexandru T1 - Behaviour factor q for the seismic design of URM buildings T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - Recent earthquakes showed that low-rise URM buildings following codecompliant seismic design and details behaved in general very well without substantial damages. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. Values of q-factors are derived for low-rise URM buildings with rigid diaphragms, with reference to modern structural configurations realized in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0 to 3.0 are proposed. KW - unreinforced masonry buildings KW - modern constructions KW - seismic design KW - linear elastic analysis; KW - behaviour factor q Y1 - 2022 SN - 978-973-100-533-1 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 1184 EP - 1194 ER - TY - JOUR A1 - Morandi, Paolo A1 - Butenweg, Christoph A1 - Breis, Khaled A1 - Beyer, Katrin A1 - Magenes, Guido ED - Ansal, Atilla T1 - Latest findings on the behaviour factor q for the seismic design of URM buildings JF - Bulletin of Earthquake Engineering N2 - Recent earthquakes as the 2012 Emilia earthquake sequence showed that recently built unreinforced masonry (URM) buildings behaved much better than expected and sustained, despite the maximum PGA values ranged between 0.20–0.30 g, either minor damage or structural damage that is deemed repairable. Especially low-rise residential and commercial masonry buildings with a code-conforming seismic design and detailing behaved in general very well without substantial damages. The low damage grades of modern masonry buildings that was observed during this earthquake series highlighted again that codified design procedures based on linear analysis can be rather conservative. Although advances in simulation tools make nonlinear calculation methods more readily accessible to designers, linear analyses will still be the standard design method for years to come. The present paper aims to improve the linear seismic design method by providing a proper definition of the q-factor of URM buildings. These q-factors are derived for low-rise URM buildings with rigid diaphragms which represent recent construction practise in low to moderate seismic areas of Italy and Germany. The behaviour factor components for deformation and energy dissipation capacity and for overstrength due to the redistribution of forces are derived by means of pushover analyses. Furthermore, considerations on the behaviour factor component due to other sources of overstrength in masonry buildings are presented. As a result of the investigations, rationally based values of the behaviour factor q to be used in linear analyses in the range of 2.0–3.0 are proposed. KW - Unreinforced masonry buildings KW - Modern constructions KW - Seismic design KW - Linear elastic analysis KW - Behaviour factor q Y1 - 2022 U6 - https://doi.org/10.1007/s10518-022-01419-7 SN - 1573-1456 SN - 1570-761X VL - 20 IS - 11 SP - 5797 EP - 5848 PB - Springer Nature CY - Cham ER - TY - JOUR A1 - Marinković, Marko A1 - Butenweg, Christoph ED - Ford, Michael C. T1 - Experimental testing of decoupled masonry infills with steel anchors for out-of-plane support under combined in-plane and out-of-plane seismic loading JF - Construction and Building Materials N2 - Because of simple construction process, high energy efficiency, significant fire resistance and excellent sound isolation, masonry infilled reinforced concrete (RC) frame structures are very popular in most of the countries in the world, as well as in seismic active areas. However, many RC frame structures with masonry infills were seriously damaged during earthquake events, as the traditional infills are generally constructed with direct contact to the RC frame which brings undesirable infill/frame interaction. This interaction leads to the activation of the equivalent diagonal strut in the infill panel, due to the RC frame deformation, and combined with seismically induced loads perpendicular to the infill panel often causes total collapses of the masonry infills and heavy damages to the RC frames. This fact was the motivation for developing different approaches for improving the behaviour of masonry infills, where infill isolation (decoupling) from the frame has been more intensively studied in the last decade. In-plane isolation of the infill wall reduces infill activation, but causes the need for additional measures to restrain out-of-plane movements. This can be provided by installing steel anchors, as proposed by some researchers. Within the framework of European research project INSYSME (Innovative Systems for Earthquake Resistant Masonry Enclosures in Reinforced Concrete Buildings) the system based on a use of elastomers for in-plane decoupling and steel anchors for out-of-plane restrain was tested. This constructive solution was tested and deeply investigated during the experimental campaign where traditional and decoupled masonry infilled RC frames with anchors were subjected to separate and combined in-plane ‬and out-of-plane loading. Based on a detailed evaluation and comparison of the test results, the performance and effectiveness of the developed system are illustrated. KW - Masonry infill KW - Reinforced concrete frame KW - Earthquake KW - INSYSME KW - Decoupling Y1 - 2022 U6 - https://doi.org/10.1016/j.conbuildmat.2021.126041 SN - 1879-0526 SN - 0950-0618 VL - 318 IS - 1 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rossi, Leonardo A1 - Winands, Mark H. M. A1 - Butenweg, Christoph ED - Zhang, Jessica T1 - Monte Carlo Tree Search as an intelligent search tool in structural design problems JF - Engineering with Computers : An International Journal for Simulation-Based Engineering N2 - Monte Carlo Tree Search (MCTS) is a search technique that in the last decade emerged as a major breakthrough for Artificial Intelligence applications regarding board- and video-games. In 2016, AlphaGo, an MCTS-based software agent, outperformed the human world champion of the board game Go. This game was for long considered almost infeasible for machines, due to its immense search space and the need for a long-term strategy. Since this historical success, MCTS is considered as an effective new approach for many other scientific and technical problems. Interestingly, civil structural engineering, as a discipline, offers many tasks whose solution may benefit from intelligent search and in particular from adopting MCTS as a search tool. In this work, we show how MCTS can be adapted to search for suitable solutions of a structural engineering design problem. The problem consists of choosing the load-bearing elements in a reference reinforced concrete structure, so to achieve a set of specific dynamic characteristics. In the paper, we report the results obtained by applying both a plain and a hybrid version of single-agent MCTS. The hybrid approach consists of an integration of both MCTS and classic Genetic Algorithm (GA), the latter also serving as a term of comparison for the results. The study’s outcomes may open new perspectives for the adoption of MCTS as a design tool for civil engineers. KW - Monte Carlo Tree Search KW - Structural design KW - Artificial intelligence KW - Civil engineering KW - Genetic algorithm Y1 - 2022 U6 - https://doi.org/10.1007/s00366-021-01338-2 SN - 1435-5663 SN - 0177-0667 VL - 38 IS - 4 SP - 3219 EP - 3236 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Butenweg, Christoph ED - Vacareanu, Radu ED - Ionescu, Constantin T1 - Seismic design and evaluation of industrial facilities T2 - The Third European Conference on Earthquake Engineering and Seismology N2 - Industrial facilities must be thoroughly designed to withstand seismic actions as they exhibit an increased loss potential due to the possibly wideranging damage consequences and the valuable process engineering equipment. Past earthquakes showed the social and political consequences of seismic damage to industrial facilities and sensitized the population and politicians worldwide for the possible hazard emanating from industrial facilities. However, a holistic approach for the seismic design of industrial facilities can presently neither be found in national nor in international standards. The introduction of EN 1998-4 of the new generation of Eurocode 8 will improve the normative situation with specific seismic design rules for silos, tanks and pipelines and secondary process components. The article presents essential aspects of the seismic design of industrial facilities based on the new generation of Eurocode 8 using the example of tank structures and secondary process components. The interaction effects of the process components with the primary structure are illustrated by means of the experimental results of a shaking table test of a three story moment resisting steel frame with different process components. Finally, an integrated approach of digital plant models based on building information modelling (BIM) and structural health monitoring (SHM) is presented, which provides not only a reliable decision-making basis for operation, maintenance and repair but also an excellent tool for rapid assessment of seismic damage. KW - Industrial facilities KW - Seismic design KW - Tanks KW - EN 1998-4 KW - Structural health monitoring Y1 - 2022 SN - 978-3-031-15103-3 SN - 978-3-031-15106-4 SN - 978-3-031-15104-0 U6 - https://doi.org/10.1007/978-3-031-15104-0 SN - 2524-342X SN - 2524-3438 N1 - 3ECEES - Third European Conference on Earthquake Engineering and Seismology, September 4 – September 9, 2022, Bucharest SP - 449 EP - 464 PB - Springer CY - Cham ER - TY - CHAP A1 - Gkatzogias, Konstantinos A1 - Veljkoviv, Ana A1 - Pohoryles, Daniel A. A1 - Tsionis, Georgios A1 - Bournas, Dionysios A. A1 - Crowley, Helen A1 - Norlén, Hedvig A1 - Butenweg, Christoph A1 - Gervasio, Helena A1 - Manfredi, Vincenzo A1 - Masi, Angelo A1 - Zaharieva, Roumiana ED - Gkatzogias, Konstantinos ED - Tsionis, Georgios T1 - Policy practice and regional impact assessment for building renovation T2 - REEBUILD Integrated Techniques for the Seismic Strengthening & Energy Efficiency of Existing Buildings N2 - The work presented in this report provides scientific support to building renovation policies in the EU by promoting a holistic point of view on the topic. Integrated renovation can be seen as a nexus between European policies on disaster resilience, energy efficiency and circularity in the building sector. An overview of policy measures for the seismic and energy upgrading of buildings across EU Member States identified only a few available measures for combined upgrading. Regulatory framework, financial instruments and digital tools similar to those for energy renovation, together with awareness and training may promote integrated renovation. A framework for regional prioritisation of building renovation was put forward, considering seismic risk, energy efficiency, and socioeconomic vulnerability independently and in an integrated way. Results indicate that prioritisation of building renovation is a multidimensional problem. Depending on priorities, different integrated indicators should be used to inform policies and accomplish the highest relative or most spread impact across different sectors. The framework was further extended to assess the impact of renovation scenarios across the EU with a focus on priority regions. Integrated renovation can provide a risk-proofed, sustainable, and inclusive built environment, presenting an economic benefit in the order of magnitude of the highest benefit among the separate interventions. Furthermore, it presents the unique capability of reducing fatalities and energy consumption at the same time and, depending on the scenario, to a greater extent. Y1 - 2022 SN - 978-92-76-60454-9 U6 - https://doi.org/10.2760/883122 SN - 1831-9424 SP - 1 EP - 68 PB - Publications Office of the European Union CY - Luxembourg ER - TY - GEN A1 - Steuer-Dankert, Linda A1 - Bernhard, Sebastian A1 - Langolf, Jessica A1 - Leicht-Scholten, Carmen T1 - Managing change and acceptance of digitalization strategies - Implementing the vision of „Internet of Production“ (IoP) in existing corporate structures T2 - Textile Impulse für die Zukunft: Aachen-Dresden-Denkendorf International Textile Conference 2022 N2 - The vision of the Internet of Production is to enable a new level of crossdomain collaboration by providing semantically adequate and context-aware data from production, development & usage in real-time. Y1 - 2022 N1 - Textile Impulse für die Zukunft: Aachen-Dresden-Denkendorf International Textile Conference 2022 : 1. – 2. Dezember 2022, Eurogress Aachen SP - 153 EP - 153 ER - TY - JOUR A1 - Schüller-Ruhl, Aaron A1 - Dinstühler, Leonard A1 - Senger, Thorsten A1 - Bergfeld, Stefan A1 - Ingenhag, Christian A1 - Fleischhaker, Robert ED - Mackenzie, Jacob T1 - Direct fabrication of arbitrary phase masks in optical glass via ultra-short pulsed laser writing of refractive index modifications JF - Applied Physics B N2 - We study the possibility to fabricate an arbitrary phase mask in a one-step laser-writing process inside the volume of an optical glass substrate. We derive the phase mask from a Gerchberg–Saxton-type algorithm as an array and create each individual phase shift using a refractive index modification of variable axial length. We realize the variable axial length by superimposing refractive index modifications induced by an ultra-short pulsed laser at different focusing depth. Each single modification is created by applying 1000 pulses with 15 μJ pulse energy at 100 kHz to a fixed spot of 25 μm diameter and the focus is then shifted axially in steps of 10 μm. With several proof-of-principle examples, we show the feasibility of our method. In particular, we identify the induced refractive index change to about a value of Δn=1.5⋅10−3. We also determine our current limitations by calculating the overlap in the form of a scalar product and we discuss possible future improvements. Y1 - 2022 U6 - https://doi.org/10.1007/s00340-022-07928-2 SN - 1432-0649 (Online) SN - 0946-2171 (Print) N1 - Corresponding author: Robert Fleischhaker VL - 128 IS - Article number: 208 SP - 1 EP - 11 PB - Springer CY - Berlin ER - TY - CHAP A1 - Striebing, Clemens A1 - Müller, Jörg A1 - Schraudner, Martina A1 - Gewinner, Irina Valerie A1 - Guerrero Morales, Patricia A1 - Hochfeld, Katharina A1 - Hoffman, Shekinah A1 - Kmec, Julie A. A1 - Nguyen, Huu Minh A1 - Schneider, Jannick A1 - Sheridan, Jennifer A1 - Steuer-Dankert, Linda A1 - Trimble O'Connor, Lindsey A1 - Vandevelde-Rougale, Agnès T1 - Promoting diversity and combatting discrimination in research organizations: a practitioner’s guide T2 - Diversity and discrimination in research organizations N2 - The essay is addressed to practitioners in research management and from academic leadership. It describes which measures can contribute to creating an inclusive climate for research teams and preventing and effectively dealing with discrimination. The practical recommendations consider the policy and organizational levels, as well as the individual perspective of research managers. Following a series of basic recommendations, six lessons learned are formulated, derived from the contributions to the edited collection on “Diversity and Discrimination in Research Organizations.” KW - Inclusive work climate KW - lessons learned KW - policy recommendations KW - recommendations for actions KW - bullying Y1 - 2022 SN - 978-1-80117-959-1 (Print) SN - 978-1-80117-956-0 (Online) U6 - https://doi.org/10.1108/978-1-80117-956-020221012 SP - 421 EP - 442 PB - Emerald Publishing Limited CY - Bingley ER - TY - CHAP A1 - Steuer-Dankert, Linda A1 - Leicht-Scholten, Carmen T1 - Perceiving diversity : an explorative approach in a complex research organization. T2 - Diversity and discrimination in research organizations N2 - Diversity management is seen as a decisive factor for ensuring the development of socially responsible innovations (Beacham and Shambaugh, 2011; Sonntag, 2014; López, 2015; Uebernickel et al., 2015). However, many diversity management approaches fail due to a one-sided consideration of diversity (Thomas and Ely, 2019) and a lacking linkage between the prevailing organizational culture and the perception of diversity in the respective organization. Reflecting the importance of diverse perspectives, research institutions have a special responsibility to actively deal with diversity, as they are publicly funded institutions that drive socially relevant development and educate future generations of developers, leaders and decision-makers. Nevertheless, only a few studies have so far dealt with the influence of the special framework conditions of the science system on diversity management. Focusing on the interdependency of the organizational culture and diversity management especially in a university research environment, this chapter aims in a first step to provide a theoretical perspective on the framework conditions of a complex research organization in Germany in order to understand the system-specific factors influencing diversity management. In a second step, an exploratory cluster analysis is presented, investigating the perception of diversity and possible influencing factors moderating this perception in a scientific organization. Combining both steps, the results show specific mechanisms and structures of the university research environment that have an impact on diversity management and rigidify structural barriers preventing an increase of diversity. The quantitative study also points out that the management level takes on a special role model function in the scientific system and thus has an influence on the perception of diversity. Consequently, when developing diversity management approaches in research organizations, it is necessary to consider the top-down direction of action, the special nature of organizational structures in the university research environment as well as the special role of the professorial level as role model for the scientific staff. KW - Diversity management KW - Organizational culture KW - Change management KW - Psychological concepts KW - Perception Y1 - 2022 SN - 978-1-80117-959-1 (Print) SN - 978-1-80117-956-0 (Online) U6 - https://doi.org/10.1108/978-1-80117-956-020221010 SP - 365 EP - 392 PB - Emerald Publishing Limited CY - Bingley ER - TY - CHAP A1 - Hinke, Christian A1 - Vervier, Luisa A1 - Brauner, Philipp A1 - Schneider, Sebastian A1 - Steuer-Dankert, Linda A1 - Ziefle, Martina A1 - Leicht-Scholten, Carmen T1 - Capability configuration in next generation manufacturing T2 - Forecasting next generation manufacturing : digital shadows, human-machine collaboration, and data-driven business models N2 - Industrial production systems are facing radical change in multiple dimensions. This change is caused by technological developments and the digital transformation of production, as well as the call for political and social change to facilitate a transformation toward sustainability. These changes affect both the capabilities of production systems and companies and the design of higher education and educational programs. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these concepts, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the capabilities dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we discuss the benefits of capturing expert knowledge and making it accessible to newcomers, especially in highly specialized industries. The experts argue that in order to cope with the challenges and circumstances of today’s world, students must already during their education at university learn how to work with AI and other technologies. This means that study programs must change and that universities must adapt their structural aspects to meet the needs of the students. Y1 - 2022 SN - 978-3-031-07733-3 U6 - https://doi.org/10.1007/978-3-031-07734-0_6 SP - 95 EP - 106 PB - Springer CY - Cham ER - TY - CHAP A1 - Brauner, Philipp A1 - Vervier, Luisa A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - Steuer-Dankert, Linda A1 - Schneider, Sebastian A1 - Baier, Ralph A1 - Ziefle, Martina A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Mertens, Alexander A1 - Nagel, Saskia K. T1 - Organization Routines in Next Generation Manufacturing T2 - Forecasting Next Generation Manufacturing N2 - Next Generation Manufacturing promises significant improvements in performance, productivity, and value creation. In addition to the desired and projected improvements regarding the planning, production, and usage cycles of products, this digital transformation will have a huge impact on work, workers, and workplace design. Given the high uncertainty in the likelihood of occurrence and the technical, economic, and societal impacts of these changes, we conducted a technology foresight study, in the form of a real-time Delphi analysis, to derive reliable future scenarios featuring the next generation of manufacturing systems. This chapter presents the organization dimension and describes each projection in detail, offering current case study examples and discussing related research, as well as implications for policy makers and firms. Specifically, we highlight seven areas in which the digital transformation of production will change how we work, how we organize the work within a company, how we evaluate these changes, and how employment and labor rights will be affected across company boundaries. The experts are unsure whether the use of collaborative robots in factories will replace traditional robots by 2030. They believe that the use of hybrid intelligence will supplement human decision-making processes in production environments. Furthermore, they predict that artificial intelligence will lead to changes in management processes, leadership, and the elimination of hierarchies. However, to ensure that social and normative aspects are incorporated into the AI algorithms, restricting measurement of individual performance will be necessary. Additionally, AI-based decision support can significantly contribute toward new, socially accepted modes of leadership. Finally, the experts believe that there will be a reduction in the workforce by the year 2030. Y1 - 2022 SN - 978-3-031-07734-0 U6 - https://doi.org/10.1007/978-3-031-07734-0_5 SP - 75 EP - 94 PB - Springer CY - Cham ER - TY - CHAP A1 - Mertens, Alexander A1 - Brauner, Philipp A1 - Baier, Ralph A1 - Brillowski, Florian A1 - Dammers, Hannah A1 - van Dyck, Marc A1 - Kong, Iris A1 - Königs, Peter A1 - Kordtomeikel, Frauke A1 - Liehner, Gian Luca A1 - Pütz, Sebastian A1 - Rodermann, Niklas A1 - Schaar, Anne Kathrin A1 - Steuer-Dankert, Linda A1 - Vervier, Luisa A1 - Wlecke, Shari A1 - Gries, Thomas A1 - Leicht-Scholten, Carmen A1 - Nagel, Saskia K. A1 - Piller, Frank T. A1 - Schuh, Günther A1 - Ziefle, Martina A1 - Nitsch, Verena ED - Michael, Judith ED - Pfeiffer, Jérôme ED - Wortmann, Andreas T1 - Modelling Human Factors in Cyber Physical Production Systems by the Integration of Human Digital Shadows T2 - Modellierung 2022 Satellite Events N2 - The future of industrial manufacturing and production will increasingly manifest in the form of cyber-physical production systems. Here, Digital Shadows will act as mediators between the physical and digital world to model and operationalize the interactions and relationships between different entities in production systems. Until now, the associated concepts have been primarily pursued and implemented from a technocentric perspective, in which human actors play a subordinate role, if they are considered at all. This paper outlines an anthropocentric approach that explicitly considers the characteristics, behavior, and traits and states of human actors in socio-technical production systems. For this purpose, we discuss the potentials and the expected challenges and threats of creating and using Human Digital Shadows in production. KW - human digital shadow KW - cyber physical production system KW - human factors Y1 - 2022 U6 - https://doi.org/10.18420/modellierung2022ws-018 N1 - Modellierung 2022, 27. Juni - 01. Juli 2022, Hamburg, Deutschland SP - 147 EP - 149 PB - GI Gesellschaft für Informatik CY - Bonn ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Hoffstadt, Kevin A1 - Krafft, Simone A1 - Reinecke, Diana A1 - Klose, Holger A1 - Kuperjans, Isabel A1 - Grömping, Markus T1 - Anaerobic digestion of algal–bacterial biomass of an Algal Turf Scrubber system JF - Biomass Conversion and Biorefinery N2 - This study investigated the anaerobic digestion of an algal–bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal–bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4%) and a mixture of manure and maize silage (107.4%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6%) and percolated green waste (43.5%) inocula. To further evaluate the potential of algal–bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7–12.5 MWh a−1) can be gained through the addition of algal–bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies. KW - Biogas KW - Methane KW - Algal Turf Scrubber KW - Algal–bacterial bioflm KW - Circular bioeconomy Y1 - 2022 U6 - https://doi.org/10.1007/s13399-022-03236-z SN - 2190-6823 N1 - Corresponding author: Dheeraja Cheenakula VL - 13 SP - 15 Seiten PB - Springer CY - Berlin ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Göttsche, Joachim A1 - Sauerborn, Markus A1 - Kaufhold, O. T1 - High Concentration Solar Collectors T2 - Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications N2 - Solar thermal concentrated power is an emerging technology that provides clean electricity for the growing energy market. To the solar thermal concentrated power plant systems belong the parabolic trough, the Fresnel collector, the solar dish, and the central receiver system. For high-concentration solar collector systems, optical and thermal analysis is essential. There exist a number of measurement techniques and systems for the optical and thermal characterization of the efficiency of solar thermal concentrated systems. For each system, structure, components, and specific characteristics types are described. The chapter presents additionally an outline for the calculation of system performance and operation and maintenance topics. One main focus is set to the models of components and their construction details as well as different types on the market. In the later part of this article, different criteria for the choice of technology are analyzed in detail. KW - Central receiver system KW - Concentrated solar collector KW - Solar dish KW - Solar concentration Y1 - 2022 SN - 978-0-12-819734-9 U6 - https://doi.org/10.1016/B978-0-12-819727-1.00058-3 SP - 198 EP - 245 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Hoffschmidt, Bernhard A1 - Alexopoulos, Spiros A1 - Rau, Christoph A1 - Sattler, Johannes, Christoph A1 - Anthrakidis, Anette A1 - Teixeira Boura, Cristiano José A1 - O’Connor, B. A1 - Chico Caminos, R.A. A1 - Rendón, C. A1 - Hilger, P. T1 - Concentrating solar power T2 - Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications N2 - The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world. KW - Central receiver power plant KW - Concentrated systems KW - Gas turbine KW - Hybridization KW - Power conversion systems Y1 - 2022 SN - 978-0-12-819734-9 SP - 670 EP - 724 PB - Elsevier CY - Amsterdam ER -