TY - JOUR A1 - Schneider, Jules A1 - Schwabedal, Justus T. C. A1 - Bialonski, Stephan T1 - Schlafspindeln – Funktion, Detektion und Nutzung als Biomarker für die psychiatrische Diagnostik JF - Der Nervenarzt N2 - Hintergrund: Die Schlafspindel ist ein Graphoelement des Elektroenzephalogramms (EEG), das im Leicht- und Tiefschlaf beobachtet werden kann. Veränderungen der Spindelaktivität wurden für verschiedene psychiatrische Erkrankungen beschrieben. Schlafspindeln zeigen aufgrund ihrer relativ konstanten Eigenschaften Potenzial als Biomarker in der psychiatrischen Diagnostik. Methode: Dieser Beitrag liefert einen Überblick über den Stand der Wissenschaft zu Eigenschaften und Funktionen der Schlafspindeln sowie über beschriebene Veränderungen der Spindelaktivität bei psychiatrischen Erkrankungen. Verschiedene methodische Ansätze und Ausblicke zur Spindeldetektion werden hinsichtlich deren Anwendungspotenzial in der psychiatrischen Diagnostik erläutert. Ergebnisse und Schlussfolgerung: Während Veränderungen der Spindelaktivität bei psychiatrischen Erkrankungen beschrieben wurden, ist deren exaktes Potenzial für die psychiatrische Diagnostik noch nicht ausreichend erforscht. Diesbezüglicher Erkenntnisgewinn wird in der Forschung gegenwärtig durch ressourcenintensive und fehleranfällige Methoden zur manuellen oder automatisierten Spindeldetektion ausgebremst. Neuere Detektionsansätze, die auf Deep-Learning-Verfahren basieren, könnten die Schwierigkeiten bisheriger Detektionsmethoden überwinden und damit neue Möglichkeiten für die praktisch KW - Schlafspindeldetektion KW - Psychiatrische Biomarker KW - · Psychiatrische Erkrankungen/Diagnostik KW - Elektroenzephalographie KW - Deep Learning Y1 - 2022 U6 - https://doi.org/10.1007/s00115-022-01340-z SN - 1433-0407 SP - 1 EP - 8 PB - Springer CY - Berlin, Heidelberg ER - TY - JOUR A1 - Pourshahidi, Ali Mohammad A1 - Engelmann, Ulrich M. A1 - Offenhäusser, Andreas A1 - Krause, Hans-Joachim T1 - Resolving ambiguities in core size determination of magnetic nanoparticles from magnetic frequency mixing data JF - Journal of Magnetism and Magnetic Materials N2 - Frequency mixing magnetic detection (FMMD) has been widely utilized as a measurement technique in magnetic immunoassays. It can also be used for the characterization and distinction (also known as “colourization”) of different types of magnetic nanoparticles (MNPs) based on their core sizes. In a previous work, it was shown that the large particles contribute most of the FMMD signal. This leads to ambiguities in core size determination from fitting since the contribution of the small-sized particles is almost undetectable among the strong responses from the large ones. In this work, we report on how this ambiguity can be overcome by modelling the signal intensity using the Langevin model in thermodynamic equilibrium including a lognormal core size distribution fL(dc,d0,σ) fitted to experimentally measured FMMD data of immobilized MNPs. For each given median diameter d0, an ambiguous amount of best-fitting pairs of parameters distribution width σ and number of particles Np with R2 > 0.99 are extracted. By determining the samples’ total iron mass, mFe, with inductively coupled plasma optical emission spectrometry (ICP-OES), we are then able to identify the one specific best-fitting pair (σ, Np) one uniquely. With this additional externally measured parameter, we resolved the ambiguity in core size distribution and determined the parameters (d0, σ, Np) directly from FMMD measurements, allowing precise MNPs sample characterization. Y1 - 2022 U6 - https://doi.org/10.1016/j.jmmm.2022.169969 SN - 0304-8853 VL - 563 IS - In progress, Art. No. 169969 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Tran, Ngoc Trinh A1 - Trinh, Tu Luc A1 - Dao, Ngoc Tien A1 - Giap, Van Tan A1 - Truong, Manh Khuyen A1 - Dinh, Thuy Ha A1 - Staat, Manfred T1 - Limit and shakedown analysis of structures under random strength T2 - Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training N2 - Direct methods comprising limit and shakedown analysis is a branch of computational mechanics. It plays a significant role in mechanical and civil engineering design. The concept of direct method aims to determinate the ultimate load bearing capacity of structures beyond the elastic range. For practical problems, the direct methods lead to nonlinear convex optimization problems with a large number of variables and onstraints. If strength and loading are random quantities, the problem of shakedown analysis is considered as stochastic programming. This paper presents a method so called chance constrained programming, an effective method of stochastic programming, to solve shakedown analysis problem under random condition of strength. In this our investigation, the loading is deterministic, the strength is distributed as normal or lognormal variables. KW - Reliability of structures KW - Stochastic programming KW - Chance constrained programming KW - Shakedown analysis KW - Limit analysis Y1 - 2022 SN - 978-604-357-084-7 N1 - 11th National Conference on Mechanics (NACOME 2022), December 2-3, 2022, VNU University of Engineering and Technology, Hanoi, Vietnam SP - 510 EP - 518 PB - Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik) CY - Hanoi ER - TY - JOUR A1 - Akimbekov, Nuraly S. A1 - Digel, Ilya A1 - Tastambek, Kuanysh T. A1 - Marat, Adel K. A1 - Turaliyeva, Moldir A. A1 - Kaiyrmanova, Gulzhan K. T1 - Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production JF - Biology N2 - It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications. Y1 - 2022 U6 - https://doi.org/10.3390/biology11091306 SN - 2079-7737 N1 - This article belongs to the Special Issue "Microbial Ecology and Evolution in Extreme Environments" VL - 11 IS - 9 PB - MDPI CY - Basel ER - TY - GEN A1 - Topcu, Murat A1 - Madabhushi, Gopal Santana Phani A1 - Staat, Manfred T1 - Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster N2 - Datasets from FEM Simulations done with COMSOL Multiphysics and Code_Aster for an elastic stress transfer between matrix and fibres having a variable radius. KW - Natural fibres KW - Polymer-matrix composites KW - Biocomposites KW - Stress concentrations KW - Finite element analysis (FEA) Y1 - 2022 U6 - https://doi.org/10.6084/m9.figshare.19333295.v2 ER - TY - JOUR A1 - Thiebes, Anja Lena A1 - Klein, Sarah A1 - Zingsheim, Jonas A1 - Möller, Georg H. A1 - Gürzing, Stefanie A1 - Reddemann, Manuel A. A1 - Behbahani, Mehdi A1 - Cornelissen, Christian G. T1 - Effervescent atomizer as novel cell spray technology to decrease the gas-to-liquid ratio JF - pharmaceutics N2 - Cell spraying has become a feasible application method for cell therapy and tissue engineering approaches. Different devices have been used with varying success. Often, twin-fluid atomizers are used, which require a high gas velocity for optimal aerosolization characteristics. To decrease the amount and velocity of required air, a custom-made atomizer was designed based on the effervescent principle. Different designs were evaluated regarding spray characteristics and their influence on human adipose-derived mesenchymal stromal cells. The arithmetic mean diameters of the droplets were 15.4–33.5 µm with decreasing diameters for increasing gas-to-liquid ratios. The survival rate was >90% of the control for the lowest gas-to-liquid ratio. For higher ratios, cell survival decreased to approximately 50%. Further experiments were performed with the design, which had shown the highest survival rates. After seven days, no significant differences in metabolic activity were observed. The apoptosis rates were not influenced by aerosolization, while high gas-to-liquid ratios caused increased necrosis levels. Tri-lineage differentiation potential into adipocytes, chondrocytes, and osteoblasts was not negatively influenced by aerosolization. Thus, the effervescent aerosolization principle was proven suitable for cell applications requiring reduced amounts of supplied air. This is the first time an effervescent atomizer was used for cell processing. KW - tri-lineage differentiation KW - survival KW - twin-fluid atomizer KW - adipose-derived stromal cells (ASCs) KW - cell atomization KW - cell aerosolization Y1 - 2022 U6 - https://doi.org/10.3390/pharmaceutics14112421 N1 - This article belongs to the Special Issue "Stromal, Stem, Signaling Cells: The Multiple Roles and Applications of Mesenchymal Cells" VL - 14 IS - 11 PB - MDPI CY - Basel ER - TY - BOOK A1 - Laack, Walter van T1 - Greater Than the Entire Universe Y1 - 2022 SN - 978-3-936624-52-6 PB - van Laack GmbH CY - Aachen ER - TY - CHAP A1 - Staat, Manfred A1 - Tran, Ngoc Trinh T1 - Strain based brittle failure criteria for rocks T2 - Proceedings of (NACOME2022) The 11th National Conference on Mechanics, Vol. 1. Solid Mechanics, Rock Mechanics, Artificial Intelligence, Teaching and Training N2 - When confining pressure is low or absent, extensional fractures are typical, with fractures occurring on unloaded planes in rock. These “paradox” fractures can be explained by a phenomenological extension strain failure criterion. In the past, a simple empirical criterion for fracture initiation in brittle rock has been developed. But this criterion makes unrealistic strength predictions in biaxial compression and tension. A new extension strain criterion overcomes this limitation by adding a weighted principal shear component. The weight is chosen, such that the enriched extension strain criterion represents the same failure surface as the Mohr–Coulomb (MC) criterion. Thus, the MC criterion has been derived as an extension strain criterion predicting failure modes, which are unexpected in the understanding of the failure of cohesive-frictional materials. In progressive damage of rock, the most likely fracture direction is orthogonal to the maximum extension strain. The enriched extension strain criterion is proposed as a threshold surface for crack initiation CI and crack damage CD and as a failure surface at peak P. Examples show that the enriched extension strain criterion predicts much lower volumes of damaged rock mass compared to the simple extension strain criterion. KW - Extension fracture KW - Extension strain criterion KW - Mohr–Coulomb criterion KW - Evolution of damage Y1 - 2023 SN - 978-604-357-084-7 N1 - 11th National Conference on Mechanics (NACOME 2022), December 2-3, 2022, VNU University of Engineering and Technology, Hanoi, Vietnam SP - 500 EP - 509 PB - Nha xuat ban Khoa hoc tu nhien va Cong nghe (Verlag Naturwissenschaft und Technik) CY - Hanoi ER - TY - CHAP A1 - Gaigall, Daniel T1 - On Consistent Hypothesis Testing In General Hilbert Spaces T2 - Proceedings of the 4th International Conference on Statistics: Theory and Applications (ICSTA’22) N2 - Inference on the basis of high-dimensional and functional data are two topics which are discussed frequently in the current statistical literature. A possibility to include both topics in a single approach is working on a very general space for the underlying observations, such as a separable Hilbert space. We propose a general method for consistently hypothesis testing on the basis of random variables with values in separable Hilbert spaces. We avoid concerns with the curse of dimensionality due to a projection idea. We apply well-known test statistics from nonparametric inference to the projected data and integrate over all projections from a specific set and with respect to suitable probability measures. In contrast to classical methods, which are applicable for real-valued random variables or random vectors of dimensions lower than the sample size, the tests can be applied to random vectors of dimensions larger than the sample size or even to functional and high-dimensional data. In general, resampling procedures such as bootstrap or permutation are suitable to determine critical values. The idea can be extended to the case of incomplete observations. Moreover, we develop an efficient algorithm for implementing the method. Examples are given for testing goodness-of-fit in a one-sample situation in [1] or for testing marginal homogeneity on the basis of a paired sample in [2]. Here, the test statistics in use can be seen as generalizations of the well-known Cramérvon-Mises test statistics in the one-sample and two-samples case. The treatment of other testing problems is possible as well. By using the theory of U-statistics, for instance, asymptotic null distributions of the test statistics are obtained as the sample size tends to infinity. Standard continuity assumptions ensure the asymptotic exactness of the tests under the null hypothesis and that the tests detect any alternative in the limit. Simulation studies demonstrate size and power of the tests in the finite sample case, confirm the theoretical findings, and are used for the comparison with concurring procedures. A possible application of the general approach is inference for stock market returns, also in high data frequencies. In the field of empirical finance, statistical inference of stock market prices usually takes place on the basis of related log-returns as data. In the classical models for stock prices, i.e., the exponential Lévy model, Black-Scholes model, and Merton model, properties such as independence and stationarity of the increments ensure an independent and identically structure of the data. Specific trends during certain periods of the stock price processes can cause complications in this regard. In fact, our approach can compensate those effects by the treatment of the log-returns as random vectors or even as functional data. Y1 - 2022 U6 - https://doi.org/10.11159/icsta22.157 N1 - 4th International Conference on Statistics: Theory and Applications (ICSTA’22), Prague, Czech Republic – July 28- 30 SP - Paper No. 157 PB - Avestia Publishing CY - Orléans, Kanada ER - TY - INPR A1 - Ringers, Christa A1 - Bialonski, Stephan A1 - Solovev, Anton A1 - Hansen, Jan N. A1 - Ege, Mert A1 - Friedrich, Benjamin M. A1 - Jurisch-Yaksi, Nathalie T1 - Preprint: Local synchronization of cilia and tissue-scale cilia alignment are sufficient for global metachronal waves T2 - bioRxiv N2 - Motile cilia are hair-like cell extensions present in multiple organs of the body. How cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine here experiments, novel analysis tools, and theory to address this knowledge gap. We investigate collective dynamics of cilia in the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Despite the fact that synchronization is local only, we observed global patterns of traveling metachronal waves across the multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right nose, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment are sufficient to generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping. Y1 - 2021 U6 - https://doi.org/10.1101/2021.11.23.469646 N1 - Veröffentlicht in eLife 12:e77701 (https://doi.org/10.7554/eLife.77701). ER -