TY - CHAP A1 - Schulte, Jonas A1 - Schwager, Christian A1 - Frantz, Cathy A1 - Schloms, Felix A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf T1 - Control concept for a molten salt receiver in star design: Development, optimization and testing with cloud passage scenarios T2 - SolarPACES 2022 conference proceedings N2 - A promising approach to reduce the system costs of molten salt solar receivers is to enable the irradiation of the absorber tubes on both sides. The star design is an innovative receiver design, pursuing this approach. The unconventional design leads to new challenges in controlling the system. This paper presents a control concept for a molten salt receiver system in star design. The control parameters are optimized in a defined test cycle by minimizing a cost function. The control concept is tested in realistic cloud passage scenarios based on real weather data. During these tests, the control system showed no sign of unstable behavior, but to perform sufficiently in every scenario further research and development like integrating Model Predictive Controls (MPCs) need to be done. The presented concept is a starting point to do so. KW - Molten salt receiver KW - Star design KW - Control optimization KW - Cloud passages Y1 - 2023 U6 - https://doi.org/10.52825/solarpaces.v1i.693 SN - 2751-9899 (online) N1 - SolarPACES 2022, 28th International Conference on Concentrating Solar Power and Chemical Energy Systems, 27-30 September, Albuquerque, NM, USA IS - 1 PB - TIB Open Publishing CY - Hannover ER - TY - JOUR A1 - Schwager, Christian A1 - Flesch, Robert A1 - Schwarzbözl, Peter A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José T1 - Advanced two phase flow model for transient molten salt receiver system simulation JF - Solar Energy N2 - In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed. KW - Molten salt solar tower KW - Molten salt receiver system KW - Dynamic simulation KW - Two-phase modelling KW - Transient flux distribution Y1 - 2022 U6 - https://doi.org/10.1016/j.solener.2021.12.065 SN - 0038-092X (print) SN - 1471-1257 (online) VL - 232 SP - 362 EP - 375 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Gedle, Yibekal A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Schmitz, Pascal A1 - Herrmann, Ulf A1 - Teixeira Boura, Cristiano José A1 - Mahdi, Zahra A1 - Caminos, Ricardo Alexander Chico A1 - Dersch, Jürgen T1 - Analysis of an integrated CSP-PV hybrid power plant T2 - SOLARPACES 2020 N2 - In the past, CSP and PV have been seen as competing technologies. Despite massive reductions in the electricity generation costs of CSP plants, PV power generation is - at least during sunshine hours - significantly cheaper. If electricity is required not only during the daytime, but around the clock, CSP with its inherent thermal energy storage gets an advantage in terms of LEC. There are a few examples of projects in which CSP plants and PV plants have been co-located, meaning that they feed into the same grid connection point and ideally optimize their operation strategy to yield an overall benefit. In the past eight years, TSK Flagsol has developed a plant concept, which merges both solar technologies into one highly Integrated CSP-PV-Hybrid (ICPH) power plant. Here, unlike in simply co-located concepts, as analyzed e.g. in [1] – [4], excess PV power that would have to be dumped is used in electric molten salt heaters to increase the storage temperature, improving storage and conversion efficiency. The authors demonstrate the electricity cost sensitivity to subsystem sizing for various market scenarios, and compare the resulting optimized ICPH plants with co-located hybrid plants. Independent of the three feed-in tariffs that have been assumed, the ICPH plant shows an electricity cost advantage of almost 20% while maintaining a high degree of flexibility in power dispatch as it is characteristic for CSP power plants. As all components of such an innovative concept are well proven, the system is ready for commercial market implementation. A first project is already contracted and in early engineering execution. KW - Hybrid energy system KW - Power plants KW - Electricity generation KW - Energy storage KW - Associated liquids Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086236 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - CHAP A1 - Mahdi, Zahra A1 - Dersch, Jürgen A1 - Schmitz, Pascal A1 - Dieckmann, Simon A1 - Caminos, Ricardo Alexander Chico A1 - Teixeira Boura, Cristiano José A1 - Herrmann, Ulf A1 - Schwager, Christian A1 - Schmitz, Mark A1 - Gielen, Hans A1 - Gedle, Yibekal A1 - Büscher, Rauno T1 - Technical assessment of Brayton cycle heat pumps for the integration in hybrid PV-CSP power plants T2 - SOLARPACES 2020 N2 - The hybridization of Concentrated Solar Power (CSP) and Photovoltaics (PV) systems is a promising approach to reduce costs of solar power plants, while increasing dispatchability and flexibility of power generation. High temperature heat pumps (HT HP) can be utilized to boost the salt temperature in the thermal energy storage (TES) of a Parabolic Trough Collector (PTC) system from 385 °C up to 565 °C. A PV field can supply the power for the HT HP, thus effectively storing the PV power as thermal energy. Besides cost-efficiently storing energy from the PV field, the power block efficiency of the overall system is improved due to the higher steam parameters. This paper presents a technical assessment of Brayton cycle heat pumps to be integrated in hybrid PV-CSP power plants. As a first step, a theoretical analysis was carried out to find the most suitable working fluid. The analysis included the fluids Air, Argon (Ar), Nitrogen (N2) and Carbon dioxide (CO2). N2 has been chosen as the optimal working fluid for the system. After the selection of the ideal working medium, different concepts for the arrangement of a HT HP in a PV-CSP hybrid power plant were developed and simulated in EBSILON®Professional. The concepts were evaluated technically by comparing the number of components required, pressure losses and coefficient of performance (COP). KW - Solar thermal technologies KW - Hybrid energy system KW - Concentrated solar power KW - Power plants KW - Energy storage Y1 - 2022 SN - 978-0-7354-4195-8 U6 - https://doi.org/10.1063/5.0086269 SN - 1551-7616 (online) SN - 0094-243X (print) N1 - SOLARPACES 2020: 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, 28 September–2 October 2020, Freiburg, Germany IS - 2445 / 1 PB - AIP conference proceedings / American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Kleefeld, Andreas A1 - Zimmermann, M. ED - Constanda, Christian ED - Bodmann, Bardo E.J. ED - Harris, Paul J. T1 - Computing Elastic Interior Transmission Eigenvalues JF - Integral Methods in Science and Engineering N2 - An alternative method is presented to numerically compute interior elastic transmission eigenvalues for various domains in two dimensions. This is achieved by discretizing the resulting system of boundary integral equations in combination with a nonlinear eigenvalue solver. Numerical results are given to show that this new approach can provide better results than the finite element method when dealing with general domains. Y1 - 2022 SN - 978-3-031-07171-3 U6 - https://doi.org/10.1007/978-3-031-07171-3_10 N1 - Corresponding author: Andreas Kleefeld SP - 139 EP - 155 PB - Birkhäuser CY - Cham ER - TY - CHAP A1 - Burgeth, Bernhard A1 - Kleefeld, Andreas A1 - Zhang, Eugene A1 - Zhang, Yue ED - Baudrier, Étienne ED - Naegel, Benoît ED - Krähenbühl, Adrien ED - Tajine, Mohamed T1 - Towards Topological Analysis of Non-symmetric Tensor Fields via Complexification T2 - Discrete Geometry and Mathematical Morphology N2 - Fields of asymmetric tensors play an important role in many applications such as medical imaging (diffusion tensor magnetic resonance imaging), physics, and civil engineering (for example Cauchy-Green-deformation tensor, strain tensor with local rotations, etc.). However, such asymmetric tensors are usually symmetrized and then further processed. Using this procedure results in a loss of information. A new method for the processing of asymmetric tensor fields is proposed restricting our attention to tensors of second-order given by a 2x2 array or matrix with real entries. This is achieved by a transformation resulting in Hermitian matrices that have an eigendecomposition similar to symmetric matrices. With this new idea numerical results for real-world data arising from a deformation of an object by external forces are given. It is shown that the asymmetric part indeed contains valuable information. Y1 - 2022 SN - 978-3-031-19897-7 U6 - https://doi.org/10.1007/978-3-031-19897-7_5 N1 - Second International Joint Conference, DGMM 2022, Strasbourg, France, October 24–27, 2022 N1 - Corresponding author: Andreas Kleefeld SP - 48 EP - 59 PB - Springer CY - Cham ER - TY - JOUR A1 - Harris, Isaac A1 - Kleefeld, Andreas T1 - Analysis and computation of the transmission eigenvalues with a conductive boundary condition JF - Applicable Analysis N2 - We provide a new analytical and computational study of the transmission eigenvalues with a conductive boundary condition. These eigenvalues are derived from the scalar inverse scattering problem for an inhomogeneous material with a conductive boundary condition. The goal is to study how these eigenvalues depend on the material parameters in order to estimate the refractive index. The analytical questions we study are: deriving Faber–Krahn type lower bounds, the discreteness and limiting behavior of the transmission eigenvalues as the conductivity tends to infinity for a sign changing contrast. We also provide a numerical study of a new boundary integral equation for computing the eigenvalues. Lastly, using the limiting behavior we will numerically estimate the refractive index from the eigenvalues provided the conductivity is sufficiently large but unknown. KW - Boundary integral equations KW - Inverse spectral problem KW - Conductive boundary condition KW - Transmission eigenvalues Y1 - 2020 U6 - https://doi.org/10.1080/00036811.2020.1789598 SN - 1563-504X VL - 101 IS - 6 SP - 1880 EP - 1895 PB - Taylor & Francis CY - London ER - TY - CHAP A1 - Langohr, Philipp A1 - Bung, Daniel Bernhard A1 - Crookston, Brian M. ED - Ortega-Sánchez, Miguel T1 - Hybrid investigation of labyrinth weirs: Discharge capacity and energy dissipation T2 - Proceedings of the 39th IAHR World Congress N2 - The replacement of existing spillway crests or gates with labyrinth weirs is a proven techno-economical means to increase the discharge capacity when rehabilitating existing structures. However, additional information is needed regarding energy dissipation of such weirs, since due to the folded weir crest, a three-dimensional flow field is generated, yielding more complex overflow and energy dissipation processes. In this study, CFD simulations of labyrinth weirs were conducted 1) to analyze the discharge coefficients for different discharges to compare the Cd values to literature data and 2) to analyze and improve energy dissipation downstream of the structure. All tests were performed for a structure at laboratory scale with a height of approx. P = 30.5 cm, a ratio of the total crest length to the total width of 4.7, a sidewall angle of 10° and a quarter-round weir crest shape. Tested headwater ratios were 0.089 ≤ HT/P ≤ 0.817. For numerical simulations, FLOW-3D Hydro was employed, solving the RANS equations with use of finite-volume method and RNG k-ε turbulence closure. In terms of discharge capacity, results were compared to data from physical model tests performed at the Utah Water Research Laboratory (Utah State University), emphasizing higher discharge coefficients from CFD than from the physical model. For upstream heads, some discrepancy in the range of ± 1 cm between literature, CFD and physical model tests was identified with a discussion regarding differences included in the manuscript. For downstream energy dissipation, variable tailwater depths were considered to analyze the formation and sweep-out of a hydraulic jump. It was found that even for high discharges, relatively low downstream Froude numbers were obtained due to high energy dissipation involved by the three-dimensional flow between the sidewalls. The effects of some additional energy dissipation devices, e.g. baffle blocks or end sills, were also analyzed. End sills were found to be non-effective. However, baffle blocks with different locations may improve energy dissipation downstream of labyrinth weirs. Y1 - 2022 SN - 978-90-832612-1-8 U6 - https://doi.org/10.3850/IAHR-39WC252171192022738 SN - 2521-7119 (print) SN - 2521-716X (online) N1 - 39th IAHR World Congress, 19. - 24. Juni 2022, Granada SP - 2313 EP - 2318 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - CHAP A1 - Crookston, Brian M. A1 - Bung, Daniel Bernhard ED - Ortega-Sánchez, Miguel T1 - Application of RGB-D cameras in hydraulic laboratory studies T2 - Proceedings of the 39th IAHR World Congress N2 - Non-intrusive measuring techniques have attained a lot of interest in relation to both hydraulic modeling and prototype applications. Complimenting acoustic techniques, significant progress has been made for the development of new optical methods. Computer vision techniques can help to extract new information, e. g. high-resolution velocity and depth data, from videos captured with relatively inexpensive, consumer-grade cameras. Depth cameras are sensors providing information on the distance between the camera and observed features. Currently, sensors with different working principles are available. Stereoscopic systems reference physical image features (passive system) from two perspectives; in order to enhance the number of features and improve the results, a sensor may also estimate the disparity from a detected light to its original projection (active stereo system). In the current study, the RGB-D camera Intel RealSense D435, working on such stereo vision principle, is used in different, typical hydraulic modeling applications. All tests have been conducted at the Utah Water Research Laboratory. This paper will demonstrate the performance and limitations of the RGB-D sensor, installed as a single camera and as camera arrays, applied to 1) detect the free surface for highly turbulent, aerated hydraulic jumps, for free-falling jets and for an energy dissipation basin downstream of a labyrinth weir and 2) to monitor local scours upstream and downstream of a Piano Key Weir. It is intended to share the authors’ experiences with respect to camera settings, calibration, lightning conditions and other requirements in order to promote this useful, easily accessible device. Results will be compared to data from classical instrumentation and the literature. It will be shown that even in difficult application, e. g. the detection of a highly turbulent, fluctuating free-surface, the RGB-D sensor may yield similar accuracy as classical, intrusive probes. Y1 - 2022 SN - 978-90-832612-1-8 U6 - https://doi.org/10.3850/IAHR-39WC252171192022964 SN - 2521-7119 (print) SN - 2521-716X (online) N1 - 39th IAHR World Congress, 19. - 24. Juni 2022, Granada SP - 5127 EP - 5133 PB - International Association for Hydro-Environment Engineering and Research (IAHR) CY - Madrid ER - TY - CHAP A1 - Veettil, Yadu Krishna Morassery A1 - Rakshit, Shantam A1 - Schopen, Oliver A1 - Kemper, Hans A1 - Esch, Thomas A1 - Shabani, Bahman ED - Bin Abdollah, Mohd Fadzli ED - Amiruddin, Hilmi ED - Singh, Amrik Singh Phuman ED - Munir, Fudhail Abdul ED - Ibrahim, Asriana T1 - Automated Control System Strategies to Ensure Safety of PEM Fuel Cells Using Kalman Filters T2 - Proceedings of the 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM 2021), Melaka, Malaysia N2 - Having well-defined control strategies for fuel cells, that can efficiently detect errors and take corrective action is critically important for safety in all applications, and especially so in aviation. The algorithms not only ensure operator safety by monitoring the fuel cell and connected components, but also contribute to extending the health of the fuel cell, its durability and safe operation over its lifetime. While sensors are used to provide peripheral data surrounding the fuel cell, the internal states of the fuel cell cannot be directly measured. To overcome this restriction, Kalman Filter has been implemented as an internal state observer. Other safety conditions are evaluated using real-time data from every connected sensor and corrective actions automatically take place to ensure safety. The algorithms discussed in this paper have been validated thorough Model-in-the-Loop (MiL) tests as well as practical validation at a dedicated test bench. KW - control system KW - PEM fuel cells KW - Kalman filter Y1 - 2022 SN - 978-981-19-3178-9 SN - 978-981-19-3179-6 (E-Book) U6 - https://doi.org/10.1007/978-981-19-3179-6_55 SN - 2195-4356 N1 - 7th International Conference and Exhibition on Sustainable Energy and Advanced Material (ICE-SEAM 2021), Universiti Teknikal Malaysia Melaka (UTeM), Malaysia, in association with the Universitas Sebelas Maret (UNS), Indonesia, 23 November 2021 SP - 296 EP - 299 PB - Springer Nature CY - Singapore ER - TY - CHAP A1 - Schopen, Oliver A1 - Shabani, Bahman A1 - Esch, Thomas A1 - Kemper, Hans A1 - Shah, Neel ED - Rahim, S.A. ED - As'arry, A. ED - Zuhri, M.Y.M. ED - Harmin, M.Y. ED - Rezali, K.A.M. ED - Hairuddin, A.A. T1 - Quantitative evaluation of health management designs for fuel cell systems in transport vehicles T2 - 2nd UNITED-SAIG International Conference Proceedings N2 - Focusing on transport vehicles, mainly with regard to aviation applications, this paper presents compilation and subsequent quantitative evaluation of methods aimed at building an optimum integrated health management solution for fuel cell systems. The methods are divided into two different main types and compiled in a related scheme. Furthermore, different methods are analysed and evaluated based on parameters specific to the aviation context of this study. Finally, the most suitable method for use in fuel cell health management systems is identified and its performance and suitability is quantified. KW - aviation application KW - health management systems KW - fuel cell systems Y1 - 2022 N1 - 2nd UNITED-SAIG International Conference, 23-24 May 2022, Putrajaya, Malaysia SP - 1 EP - 3 ER - TY - GEN A1 - Keimer, Jona A1 - Girbig, Leo A1 - Mayntz, Joscha A1 - Tegtmeyer, Philipp A1 - Wendland, Frederik A1 - Dahman, Peter A1 - Fisher, Alex A1 - Dorrington, Graham T1 - Flight mission optimization for eco-efficiency in consideration of electric regeneration and atmospheric conditions T2 - AIAA AVIATION 2022 Forum N2 - The development and operation of hybrid or purely electrically powered aircraft in regional air mobility is a significant challenge for the entire aviation sector. This technology is expected to lead to substantial advances in flight performance, energy efficiency, reliability, safety, noise reduction, and exhaust emissions. Nevertheless, any consumed energy results in heat or carbon dioxide emissions and limited electric energy storage capabilities suppress commercial use. Therefore, the significant challenges to achieving eco-efficient aviation are increased aircraft efficiency, the development of new energy storage technologies, and the optimization of flight operations. Two major approaches for higher eco-efficiency are identified: The first one, is to take horizontal and vertical atmospheric motion phenomena into account. Where, in particular, atmospheric waves hold exciting potential. The second one is the use of the regeneration ability of electric aircraft. The fusion of both strategies is expected to improve efficiency. The objective is to reduce energy consumption during flight while not neglecting commercial usability and convenient flight characteristics. Therefore, an optimized control problem based on a general aviation class aircraft has to be developed and validated by flight experiments. The formulated approach enables a development of detailed knowledge of the potential and limitations of optimizing flight missions, considering the capability of regeneration and atmospheric influences to increase efficiency and range. Y1 - 2022 U6 - https://doi.org/10.2514/6.2022-4118 N1 - AIAA AVIATION 2022 Forum, June 27-July 1, 2022 Chicago, IL & Virtual PB - AIAA CY - Reston, Va. ER - TY - CHAP A1 - Mayntz, Joscha A1 - Keimer, Jona A1 - Dahmann, Peter A1 - Hille, Sebastian A1 - Stumpf, Eike A1 - Fisher, Alex A1 - Dorrington, Graham T1 - Electrical Drive and Regeneration in General Aviation Flight with Propellers T2 - Deutscher Luft- und Raumfahrtkongress 2020 N2 - Electric flight has the potential for a more sustainable and energy-saving way of aviation compared to fossil fuel aviation. The electric motor can be used as a generator inflight to regenerate energy during descent. Three different approaches to regenerating with electric propeller powertrains are proposed in this paper. The powertrain is to be set up in a wind tunnel to determine the propeller efficiency in both working modes as well as the noise emissions. Furthermore, the planned flight tests are discussed. In preparation for these tests, a yaw stability analysis is performed with the result that the aeroplane is controllable during flight and in the most critical failure case. The paper shows the potential for inflight regeneration and addresses the research gaps in the dual role of electric powertrains for propulsion and regeneration of general aviation aircraft. KW - Propeller Aerodynamics KW - Flight Tests KW - Flight Mechanics KW - Electrical Flight KW - Inflight Regeneration, Recuperation Y1 - 2022 U6 - https://doi.org/10.25967/530100 N1 - Deutscher Luft- und Raumfahrtkongress 2020, 1. - 3. September 2020, Online PB - DGLR CY - Bonn ER -