TY - CHAP A1 - Kerpen, Nils B. A1 - Schoonees, Talia A1 - Schlurmann, Torsten A1 - Valero, Daniel A1 - Bung, Daniel B. T1 - waveSTEPS – Wellenauf- und Wellenüberlauf an getreppten Deckwerken T2 - 24. KFKI-Seminar 2019, 21.11.2019 Y1 - 2019 ER - TY - JOUR A1 - Finger, Felix A1 - Bil, Cees A1 - Braun, Carsten T1 - Initial Sizing Methodology for Hybrid-Electric General Aviation Aircraft JF - Journal of Aircraft Y1 - 2019 U6 - http://dx.doi.org/10.2514/1.C035428 SN - 1533-3868 VL - 57 IS - 2 SP - 245 EP - 255 ER - TY - GEN A1 - Engelmann, Ulrich M. T1 - Gesprächsführungskompetenzen für Naturwissenschaftler und Ingenieure. Maßnahmen zur Förderung und curricularen Verankerung von Gesprächsführungskompetenzen an Fachhochschulen T1 - Conversational Skills for Scientists and Engineers. - Measures for the Development and Curricular Promotion of Conversational Competences at German Universities of Applied Science Y1 - 2019 U6 - http://dx.doi.org/10.13140/RG.2.2.34026.98248 PB - Deutsche Gesellschaft für Sprechwissenschaft und Sprecherziehung (DGSS e.V.) CY - Aachen ER - TY - THES A1 - Engelmann, Ulrich M. T1 - Assessing magnetic fluid hyperthermia : magnetic relaxation simulation, modeling of nanoparticle uptake inside pancreatic tumor cells and in vitro efficacy Y1 - 2019 SN - 978-3-945954-58-4 N1 - Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen, 2019 PB - Infinite Science Publishing CY - Lübeck ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Seifert, Julian A1 - Mues, Benedikt A1 - Roitsch, Stefan A1 - Ménager, Christine A1 - Schmidt, Annette M. A1 - Slabu, Ioana T1 - Heating efficiency of magnetic nanoparticles decreases with gradual immobilization in hydrogels JF - Journal of Magnetism and Magnetic Materials Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.jmmm.2018.09.113 SN - 0304-8853 VL - 471 IS - 1 SP - 486 EP - 494 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Engelmann, Ulrich M. A1 - Shasha, Carolyn A1 - Teeman, Eric A1 - Slabu, Iona A1 - Krishnan, Kannan M. T1 - Predicting size-dependent heating efficiency of magnetic nanoparticles from experiment and stochastic Néel-Brown Langevin simulation JF - Journal of Magnetism and Magnetic Materials Y1 - 2019 U6 - http://dx.doi.org/10.1016/j.jmmm.2018.09.041 SN - 0304-8853 VL - 471 IS - 1 SP - 450 EP - 456 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Slabu, Ioana A1 - Roeth, Anjali A. A1 - Engelmann, Ulrich M. A1 - Wiekhorst, Frank A1 - Buhl, Eva M. A1 - Neumann, Ulf P. A1 - Schmitz-Rode, Thomas T1 - Modeling of magnetoliposome uptake in human pancreatic tumor cells in vitro JF - Nanotechnology Y1 - 2019 U6 - http://dx.doi.org/10.1088/1361-6528/ab033e SN - 1361-6528 VL - 30 IS - 18 SP - 184004 ER - TY - JOUR A1 - Engel, Mareike A1 - Gemünde, Andre A1 - Holtmann, Dirk A1 - Müller-Renno, Christine A1 - Ziegler, Christiane A1 - Tippkötter, Nils A1 - Ulber, Roland T1 - Clostridium acetobutylicum’s connecting world: cell appendage formation in bioelectrochemical systems JF - ChemElectroChem Y1 - 2019 U6 - http://dx.doi.org/10.1002/celc.201901656 SN - 2196-0216 IS - Accepted Article PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Karschuck, T. L. A1 - Filipov, Y. A1 - Bollella, P. A1 - Schöning, Michael Josef A1 - Katz, E. T1 - Not-XOR (NXOR) logic gate based on an enzyme-catalyzed reaction JF - International Journal of Unconventional Computing N2 - Enzyme-catalyzed reactions have been designed to mimic various Boolean logic gates in the general framework of unconventional biomolecular computing. While some of the logic gates, particularly OR, AND, are easy to realize with biocatalytic reactions and have been reported in numerous publications, some other, like NXOR, are very challenging and have not been realized yet with enzyme reactions. The paper reports on a novel approach to mimicking the NXOR logic gate using the bell-shaped enzyme activity dependent on pH values. Shifting pH from the optimum value to the acidic or basic values by using acid or base inputs (meaning 1,0 and 0,1 inputs) inhibits the enzyme reaction, while keeping the optimum pH (assuming 0,0 and 1,1 input combinations) preserves a high enzyme activity. The challenging part of the present approach is the selection of an enzyme with a well-demonstrated bell-shape activity dependence on the pH value. While many enzymes can satisfy this condition, we selected pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase as this enzyme has the optimum pH center-located on the pH scale allowing the enzyme activity change by the acidic and basic pH shift from the optimum value corresponding to the highest activity. The present NXOR gate is added to the biomolecular “toolbox” as a new example of Boolean logic gates based on enzyme reactions. Y1 - 2019 SN - 1548-7199 VL - 14 IS - 3-4 SP - 235 EP - 242 PB - Old City Publishing CY - Philadelphia ER - TY - JOUR A1 - Dantism, Shahriar A1 - Röhlen, Desiree A1 - Wagner, Torsten A1 - Wagner, P. A1 - Schöning, Michael Josef T1 - A LAPS-based differential sensor for parallelized metabolism monitoring of various bacteria JF - Sensors N2 - Monitoring the cellular metabolism of bacteria in (bio)fermentation processes is crucial to control and steer them, and to prevent undesired disturbances linked to metabolically inactive microorganisms. In this context, cell-based biosensors can play an important role to improve the quality and increase the yield of such processes. This work describes the simultaneous analysis of the metabolic behavior of three different types of bacteria by means of a differential light-addressable potentiometric sensor (LAPS) set-up. The study includes Lactobacillus brevis, Corynebacterium glutamicum, and Escherichia coli, which are often applied in fermentation processes in bioreactors. Differential measurements were carried out to compensate undesirable influences such as sensor signal drift, and pH value variation during the measurements. Furthermore, calibration curves of the cellular metabolism were established as a function of the glucose concentration or cell number variation with all three model microorganisms. In this context, simultaneous (bio)sensing with the multi-organism LAPS-based set-up can open new possibilities for a cost-effective, rapid detection of the extracellular acidification of bacteria on a single sensor chip. It can be applied to evaluate the metabolic response of bacteria populations in a (bio)fermentation process, for instance, in the biogas fermentation process. Y1 - 2019 U6 - http://dx.doi.org/10.3390/s19214692 SN - 1424-8220 VL - 19 IS - 21 PB - MDPI CY - Basel ER -