TY - JOUR A1 - Samm, Doris A1 - Bosetti, P.-C. T1 - Testmessungen an einem grossflaechigen (Durchmesser 35 cm) Photomultiplier Test measurements of a large-area (diameter 35 cm) photomultiplier / Bosetti, P.-C.; ... Samm, D. [u.a.] JF - Verhandlungen der Deutschen Physikalischen Gesellschaft. 25 (1990), H. 1 Y1 - 1990 N1 - Fruehjahrstagung des Fachausschusses Teilchenphysik der Deutschen Physikalischen Gesellschaft e.V. (DPG), Hamburg (Germany), 21-24 Mar 1990 SP - 33 EP - 33 ER - TY - CHAP A1 - Czarnecki, Christian A1 - Bensberg, Frank T1 - Telekommunikationsunternehmen, Anwendungssysteme für T2 - Enzyklopädie der Wirtschaftsinformatik Y1 - 2019 N1 - Online-Lexikon SP - 1 EP - 3 PB - Gito CY - Berlin ER - TY - BOOK A1 - Benkner, Thorsten A1 - Weidenfeller, Hermann T1 - Telekommunikationstechnik. Informationsübertragung und Netze Y1 - 2002 SN - 3-935340-06-0 PB - Schlembach CY - Weil der Stadt ER - TY - JOUR A1 - Siepmann, Thomas A1 - Schuh, G. A1 - Keil, M. T1 - TELEflow – Eine Methode zum Reengineering von Prozessen in Wertschöpfungsnetzwerken / Schuh, G.; Siepmann, Th.; Keil, M. JF - Industrie-Management : Zeitschrift für industrielle Geschäftsprozesse (1997) Y1 - 1997 SP - 21 EP - 24 ER - TY - CHAP A1 - Leise, Philipp A1 - Altherr, Lena A1 - Pelz, Peter F. T1 - Technical Operations Research (TOR) - Algorithms, not Engineers, Design Optimal Energy Efficient and Resilient Cooling Systems T2 - FAN2018 - Proceedings of the International Conference on Fan Noise, Aerodynamics, Applications and Systems N2 - The overall energy efficiency of ventilation systems can be improved by considering not only single components, but by considering as well the interplay between every part of the system. With the help of the method "TOR" ("Technical Operations Research"), which was developed at the Chair of Fluid Systems at TU Darmstadt, it is possible to improve the energy efficiency of the whole system by considering all possible design choices programmatically. We show the ability of this systematic design approach with a ventilation system for buildings as a use case example. Based on a Mixed-Integer Nonlinear Program (MINLP) we model the ventilation system. We use binary variables to model the selection of different pipe diameters. Multiple fans are model with the help of scaling laws. The whole system is represented by a graph, where the edges represent the pipes and fans and the nodes represents the source of air for cooling and the sinks, that have to be cooled. At the beginning, the human designer chooses a construction kit of different suitable fans and pipes of different diameters and different load cases. These boundary conditions define a variety of different possible system topologies. It is not possible to consider all topologies by hand. With the help of state of the art solvers, on the other side, it is possible to solve this MINLP. Next to this, we also consider the effects of malfunctions in different components. Therefore, we show a first approach to measure the resilience of the shown example use case. Further, we compare the conventional approach with designs that are more resilient. These more resilient designs are derived by extending the before mentioned model with further constraints, that consider explicitly the resilience of the overall system. We show that it is possible to design resilient systems with this method already in the early design stage and compare the energy efficiency and resilience of these different system designs. Y1 - 2018 N1 - International Conference on Fan Noise, Aerodynamics, Applications and Systems 18-20.04.2018 Darmstadt, Deutschland SP - 1 EP - 12 ER - TY - CHAP A1 - Zähl, Philipp M. A1 - Theis, Sabine A1 - Wolf, Martin A1 - Köhler, Klemens ED - Chen, Jessie Y. C. ED - Fragomeni, Gino T1 - Teamwork in software development and what personality has to do with it - an overview T2 - Virtual, Augmented and Mixed Reality N2 - Due to the increasing complexity of software projects, software development is becoming more and more dependent on teams. The quality of this teamwork can vary depending on the team composition, as teams are always a combination of different skills and personality types. This paper aims to answer the question of how to describe a software development team and what influence the personality of the team members has on the team dynamics. For this purpose, a systematic literature review (n=48) and a literature search with the AI research assistant Elicit (n=20) were conducted. Result: A person’s personality significantly shapes his or her thinking and actions, which in turn influences his or her behavior in software development teams. It has been shown that team performance and satisfaction can be strongly influenced by personality. The quality of communication and the likelihood of conflict can also be attributed to personality. KW - Teamwork KW - Software KW - Personality KW - Performance KW - Elicit Y1 - 2023 SN - 978-3-031-35633-9 (Print) SN - 978-3-031-35634-6 (Online) U6 - http://dx.doi.org/10.1007/978-3-031-35634-6_10 N1 - Virtual, Augmented and Mixed Reality: 15th International Conference. VAMR 2023. Held as Part of the 25th HCI International Conference. HCII 2023. Copenhagen, Denmark. July 23–28, 2023. SP - 130 EP - 153 PB - Springer CY - Cham ER - TY - JOUR A1 - Ferrein, Alexander A1 - Niemüller, Tim A1 - Steinbauer, Gerald T1 - Team Zadeat 2010 : application for participation Y1 - 2010 ER - TY - JOUR A1 - Ferrein, Alexander A1 - Steinbauer, Gerald A1 - McPhillips, Graeme A1 - Niemüller, Tim A1 - Potgieter, Anet T1 - Team Zadeat 2009 : team report Y1 - 2009 VL - 6 SP - 1 ER - TY - CHAP A1 - Hoegen, Anne von A1 - Doncker, Rik W. De A1 - Rütters, René T1 - Teaching Digital Control of Operational Amplifier Processes with a LabVIEW Interface and Embedded Hardware T2 - The 23rd International Conference on Electrical Machines and Systems (ICEMS), Hamamatsu, Japan Y1 - 2020 U6 - http://dx.doi.org/10.23919/ICEMS50442.2020.9290928 SP - 1117 EP - 1122 ER - TY - CHAP A1 - Rütters, René A1 - Weinheimer, Marius A1 - Bragard, Michael T1 - Teaching Control Theory with a Simplified Helicopter Model and a Classroom Fitting Hardware Test-Bench T2 - 2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) Y1 - 2018 SN - 978-1-5386-6903-7 U6 - http://dx.doi.org/10.1109/RTUCON.2018.8659871 ER -