TY - CHAP A1 - Dachwald, Bernd A1 - Mikucki, Jill A. A1 - Tulaczyk, Slawek A1 - Digel, Ilya A1 - Feldmann, Marco A1 - Espe, Clemens A1 - Plescher, Engelbert A1 - Xu, Changsheng T1 - IceMole - a maneuverable probe for clean in-situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems : extended abstract / SCAR Open Science Conference 2012, Session 29: Advancing Clean Technologies for Exploration of Glacial Aquatic Ecosystems N2 - The ”IceMole“ is a novel maneuverable subsurface ice probe for clean in-situ analysis and sampling of subsurface ice and subglacial water/brine. It is developed and build at FH Aachen University of Applied Sciences’ Astronautical Laboratory. A first prototype was successfully tested on the Swiss Morteratsch glacier in 2010. Clean sampling is achieved with a hollow ice screw (as it is used in mountaineering) at the tip of the probe. Maneuverability is achieved with a differentially heated melting head. Funded by the German Space Agency (DLR), a consortium led by FH Aachen currently develops a much more advanced IceMole probe, which includes a sophisticated system for obstacle avoidance, target detection, and navigation in the ice. We intend to use this probe for taking clean samples of subglacial brine at the Blood Falls (McMurdo Dry Valleys, East Antarctica) for chemical and microbiological analysis. In our conference contribution, we 1) describe the IceMole design, 2) report the results of the field tests of the first prototype on the Morteratsch glacier, 3) discuss the probe’s potential for the clean in-situ analysis and sampling of subsurface ice and subglacial liquids, and 4) outline the way ahead in the development of this technology. KW - Eisschicht KW - Sonde KW - subsurface ice KW - subglacial aquatic ecosystems Y1 - 2012 ER - TY - CHAP A1 - Chwallek, Constanze A1 - Maaßen, Franziska T1 - Cure or blessing? The effect of (non-financial) signals on sustainable venture's funding success T2 - G-Forum Jahreskonferenz 2022 Y1 - 2022 N1 - G-Forum Jahreskonferenz 2022, 21. – 23. September 2022, Technische Universität Dresden (Germany); 25. Interdisziplinäre Jahreskonferenz zu Entrepreneurship, Innovation und Mittelstand ER - TY - CHAP A1 - Chudoba, Rostislav A1 - Butenweg, Christoph A1 - Kuhlmann, Wolfram T1 - Technical information system for collaborative material research T2 - Sixth International Conference on Computational Structures Technology : [Prague, Czech Republic, 4 - 6 September 2002] Y1 - 2002 SP - 1 EP - 11 ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Paulsen, Svea A1 - Ott, Fabian A1 - Grömping, Markus T1 - Operational window of a deammonifying sludge for mainstream application in a municipal wastewater treatment plant JF - Water and Environment Journal N2 - The present work aimed to study the mainstream feasibility of the deammonifying sludge of side stream of municipal wastewater treatment plant (MWWTP) in Kaster, Germany. For this purpose, the deammonifying sludge available at the side stream was investigated for nitrogen (N) removal with respect to the operational factors temperature (15–30°C), pH value (6.0–8.0) and chemical oxygen demand (COD)/N ratio (≤1.5–6.0). The highest and lowest N-removal rates of 0.13 and 0.045 kg/(m³ d) are achieved at 30 and 15°C, respectively. Different conditions of pH and COD/N ratios in the SBRs of Partial nitritation/anammox (PN/A) significantly influenced both the metabolic processes and associated N-removal rates. The scientific insights gained from the current work signifies the possibility of mainstream PN/A at WWTPs. The current study forms a solid basis of operational window for the upcoming semi-technical trails to be conducted prior to the full-scale mainstream PN/A at WWTP Kaster and WWTPs globally. KW - Anammox KW - Mainstream KW - Nitrogen removal KW - Partial nitritation KW - Wastewater Y1 - 2023 U6 - https://doi.org/10.1111/wej.12898 SN - 1747-6593 N1 - Corresponding author: Dheeraja Cheenakula VL - 38 IS - 1 SP - 59 EP - 70 PB - Wiley CY - Chichester ER - TY - JOUR A1 - Cheenakula, Dheeraja A1 - Hoffstadt, Kevin A1 - Krafft, Simone A1 - Reinecke, Diana A1 - Klose, Holger A1 - Kuperjans, Isabel A1 - Grömping, Markus T1 - Anaerobic digestion of algal–bacterial biomass of an Algal Turf Scrubber system JF - Biomass Conversion and Biorefinery N2 - This study investigated the anaerobic digestion of an algal–bacterial biofilm grown in artificial wastewater in an Algal Turf Scrubber (ATS). The ATS system was located in a greenhouse (50°54′19ʺN, 6°24′55ʺE, Germany) and was exposed to seasonal conditions during the experiment period. The methane (CH4) potential of untreated algal–bacterial biofilm (UAB) and thermally pretreated biofilm (PAB) using different microbial inocula was determined by anaerobic batch fermentation. Methane productivity of UAB differed significantly between microbial inocula of digested wastepaper, a mixture of manure and maize silage, anaerobic sewage sludge, and percolated green waste. UAB using sewage sludge as inoculum showed the highest methane productivity. The share of methane in biogas was dependent on inoculum. Using PAB, a strong positive impact on methane productivity was identified for the digested wastepaper (116.4%) and a mixture of manure and maize silage (107.4%) inocula. By contrast, the methane yield was significantly reduced for the digested anaerobic sewage sludge (50.6%) and percolated green waste (43.5%) inocula. To further evaluate the potential of algal–bacterial biofilm for biogas production in wastewater treatment and biogas plants in a circular bioeconomy, scale-up calculations were conducted. It was found that a 0.116 km2 ATS would be required in an average municipal wastewater treatment plant which can be viewed as problematic in terms of space consumption. However, a substantial amount of energy surplus (4.7–12.5 MWh a−1) can be gained through the addition of algal–bacterial biomass to the anaerobic digester of a municipal wastewater treatment plant. Wastewater treatment and subsequent energy production through algae show dominancy over conventional technologies. KW - Biogas KW - Methane KW - Algal Turf Scrubber KW - Algal–bacterial bioflm KW - Circular bioeconomy Y1 - 2022 U6 - https://doi.org/10.1007/s13399-022-03236-z SN - 2190-6823 N1 - Corresponding author: Dheeraja Cheenakula VL - 13 SP - 15 Seiten PB - Springer CY - Berlin ER - TY - CHAP A1 - Chaiyboun, Ali A1 - Traute, Rüdiger A1 - Kiesewetter, Olaf A1 - Ahlers, Simon A1 - Müller, Gerhard A1 - Doll, Theodor T1 - Modular analytical multicomponent analysis in gas sensor arrays N2 - A multi-sensor system is a chemical sensor system which quantitatively and qualitatively records gases with a combination of cross-sensitive gas sensor arrays and pattern recognition software. This paper addresses the issue of data analysis for identification of gases in a gas sensor array. We introduce a software tool for gas sensor array configuration and simulation. It concerns thereby about a modular software package for the acquisition of data of different sensors. A signal evaluation algorithm referred to as matrix method was used specifically for the software tool. This matrix method computes the gas concentrations from the signals of a sensor array. The software tool was used for the simulation of an array of five sensors to determine gas concentration of CH4, NH3, H2, CO and C2H5OH. The results of the present simulated sensor array indicate that the software tool is capable of the following: (a) identify a gas independently of its concentration; (b) estimate the concentration of the gas, even if the system was not previously exposed to this concentration; (c) tell when a gas concentration exceeds a certain value. A gas sensor data base was build for the configuration of the software. With the data base one can create, generate and manage scenarios and source files for the simulation. With the gas sensor data base and the simulation software an on-line Web-based version was developed, with which the user can configure and simulate sensor arrays on-line. KW - Biosensor KW - Main sensitivity KW - cross sensitivity KW - matrix method KW - gas sensor array KW - modelling Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:a96-opus-1358 ER - TY - JOUR A1 - Capitain, Charlotte A1 - Wagner, Sebastian A1 - Hummel, Joana A1 - Tippkötter, Nils T1 - Investigation of C–N Formation Between Catechols and Chitosan for the Formation of a Strong, Novel Adhesive Mimicking Mussel Adhesion JF - Waste and Biomass Valorization Y1 - 2021 U6 - https://doi.org/10.1007/s12649-020-01110-5 SN - 1877-265X N1 - Corresponding author: Nils Tippkötter VL - 12 SP - 1761 EP - 1779 PB - Springer Nature CY - Cham ER - TY - CHAP A1 - Bühler, P. A1 - Leandro, J. A1 - Bung, Daniel Bernhard A1 - Lopes, P. A1 - Carvalho, R. T1 - Measuring void fraction of a stepped spillway with non-intrusive methods using different image resolutions T2 - 2nd International Workshop on Hydraulic Structures : Data Validation : Coimbra, Portugal, 8-9 May 2015 Y1 - 2015 SP - 1 EP - 8 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Rosin, Julia A1 - Kubalski, Thomas T1 - Seismic response of conventional and base-isolated liquid storage tanks T2 - International Conference on Earthquake Engineering : 29.-31.05.2013, Skopje, Mazedonien Y1 - 2013 SP - 1 EP - 8 ER - TY - CHAP A1 - Butenweg, Christoph A1 - Kuhlmann, Winfried A1 - Lopez, M. A1 - Fernandez, S. T1 - Seismic vulnerability assessment of the Aachen Cathedral based on measurements and numerical simulations T2 - International Conference on Earthquake Engineering to mark 40 years from Catastrophic 1963 Skopje Earthquake, Skopje 2003 Y1 - 2003 SP - 1 EP - 8 ER -