TY - JOUR A1 - Wardoyo, Arinto Y.P. A1 - Noor, Johan A.E. A1 - Elbers, Gereon A1 - Schmitz, Sandra A1 - Flaig, Sascha T. A1 - Budianto, Arif T1 - Characterizing volcanic ash elements from the 2015 eruptions of bromo and raung volcanoes, Indonesia JF - Polish Journal of Environmental Studies N2 - The volcanic eruptions of Mt. Bromo and Mt. Raung in East Java, Indonesia, in 2015 perturbed volcanic materials and affected surface-layer air quality at surrounding locations. During the episodes, the volcanic ash from the eruptions influenced visibility, traffic accidents, flight schedules, and human health. In this research, the volcanic ash particles were collected and characterized by relying on the detail of physical observation. We performed an assessment of the volcanic ash elements to characterize the volcanic ash using two different methods which are aqua regia extracts followed by MP-AES and XRF laboratory test of bulk samples. The analysis results showed that the volcanic ash was mixed of many materials, such as Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Ni, and others. Fe, Si, Ca, and Al were found as the major elements, while the others were the trace elements Ba, Cr, Cu, Mn, P, Mn, Ni, Zn, Sb, Sr, and V with the minor concentrations. XRF analyses showed that Fe dominated the elements of the volcanic ash. The XRF analysis showed that Fe was at 35.40% in Bromo and 43.00% in Raung of the detected elements in bulk material. The results of aqua regia extracts analyzed by MP-AES were 1.80% and 1.70% of Fe element for Bromo and Raung volcanoes, respectively. Y1 - 2020 U6 - https://doi.org/10.15244/pjoes/99101 SN - 2083-5906 VL - 29 IS - 2 SP - 1899 EP - 1907 PB - HARD CY - Olsztyn ER - TY - CHAP A1 - Paulsen, Svea A1 - Hoffstadt, Kevin A1 - Krafft, Simone A1 - Leite, A. A1 - Zang, J. A1 - Fonseca-Zang, W. A1 - Kuperjans, Isabel T1 - Continuous biogas production from sugarcane as sole substrate T2 - Energy Reports N2 - A German–Brazilian research project investigates sugarcane as an energy plant in anaerobic digestion for biogas production. The aim of the project is a continuous, efficient, and stable biogas process with sugarcane as the substrate. Tests are carried out in a fermenter with a volume of 10 l. In order to optimize the space–time load to achieve a stable process, a continuous process in laboratory scale has been devised. The daily feed in quantity and the harvest time of the substrate sugarcane has been varied. Analyses of the digester content were conducted twice per week to monitor the process: The ratio of inorganic carbon content to volatile organic acid content (VFA/TAC), the concentration of short-chain fatty acids, the organic dry matter, the pH value, and the total nitrogen, phosphate, and ammonium concentrations were monitored. In addition, the gas quality (the percentages of CO₂, CH₄, and H₂) and the quantity of the produced gas were analyzed. The investigations have exhibited feasible and economical production of biogas in a continuous process with energy cane as substrate. With a daily feeding rate of 1.68gᵥₛ/l*d the average specific gas formation rate was 0.5 m3/kgᵥₛ. The long-term study demonstrates a surprisingly fast metabolism of short-chain fatty acids. This indicates a stable and less susceptible process compared to other substrates. Y1 - 2020 U6 - https://doi.org/10.1016/j.egyr.2019.08.035 N1 - 6th International Conference on Energy and Environment Research, ICEER 2019, 22–25 July, University of Aveiro, Portugal VL - 6 IS - Supplement 1 SP - 153 EP - 158 PB - Elsevier ER - TY - JOUR A1 - Rupp, Matthias A1 - Rieke, Christian A1 - Handschuh, Nils A1 - Kuperjans, Isabel T1 - Economic and ecological optimization of electric bus charging considering variable electricity prices and CO₂eq intensities JF - Transportation Research Part D: Transport and Environment N2 - In many cities, diesel buses are being replaced by electric buses with the aim of reducing local emissions and thus improving air quality. The protection of the environment and the health of the population is the highest priority of our society. For the transport companies that operate these buses, not only ecological issues but also economic issues are of great importance. Due to the high purchase costs of electric buses compared to conventional buses, operators are forced to use electric vehicles in a targeted manner in order to ensure amortization over the service life of the vehicles. A compromise between ecology and economy must be found in order to both protect the environment and ensure economical operation of the buses. In this study, we present a new methodology for optimizing the vehicles’ charging time as a function of the parameters CO₂eq emissions and electricity costs. Based on recorded driving profiles in daily bus operation, the energy demands of conventional and electric buses are calculated for the passenger transportation in the city of Aachen in 2017. Different charging scenarios are defined to analyze the influence of the temporal variability of CO₂eq intensity and electricity price on the environmental impact and economy of the bus. For every individual day of a year, charging periods with the lowest and highest costs and emissions are identified and recommendations for daily bus operation are made. To enable both the ecological and economical operation of the bus, the parameters of electricity price and CO₂ are weighted differently, and several charging periods are proposed, taking into account the priorities previously set. A sensitivity analysis is carried out to evaluate the influence of selected parameters and to derive recommendations for improving the ecological and economic balance of the battery-powered electric vehicle. In all scenarios, the optimization of the charging period results in energy cost savings of a maximum of 13.6% compared to charging at a fixed electricity price. The savings potential of CO₂eq emissions is similar, at 14.9%. From an economic point of view, charging between 2 a.m. and 4 a.m. results in the lowest energy costs on average. The CO₂eq intensity is also low in this period, but midday charging leads to the largest savings in CO₂eq emissions. From a life cycle perspective, the electric bus is not economically competitive with the conventional bus. However, from an ecological point of view, the electric bus saves on average 37.5% CO₂eq emissions over its service life compared to the diesel bus. The reduction potential is maximized if the electric vehicle exclusively consumes electricity from solar and wind power. Y1 - 2020 U6 - https://doi.org/10.1016/j.trd.2020.102293 SN - 1361-9209 VL - 81 IS - Article 102293 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Borchert, Jörg A1 - Tenbrake, Andre T1 - Bewirtschaftung von Flexibilität über Microservices eines Plattformanbieters T2 - Realisierung Utility 4.0 Band 1 N2 - Die Energiewirtschaft befindet sich in einem starken Wandel, der v. a. durch die Energiewende und Digitalisierung Druck auf sämtliche Marktteilnehmer ausübt. Das klassische Geschäftsmodell des Energieversorgungsunternehmens verändert sich dabei grundlegend. Der kontinuierlich ansteigende Einsatz dezentraler und volatiler Erzeugungsanlagen macht die Identifikation von Flexibilitätspotenzialen notwendig, um weiterhin eine hohe Versorgungssicherheit zu gewährleisten. Dieser Schritt ist nur mit einem hohen Digitalisierungsgrad möglich. Eine funktionale Plattform mit Microservices, die zu Geschäftsprozessen verbunden werden können, wird als Möglichkeit zur Aktivierung der Flexibilität und Digitalisierung der Energieversorgungsunternehmen im Folgenden vorgestellt. Y1 - 2020 SN - 978-3-658-25332-5 U6 - https://doi.org/10.1007/978-3-658-25332-5_37 SP - 615 EP - 626 PB - Springer Vieweg CY - Wiesbaden ER -