TY - CHAP A1 - Müller, Tim M. A1 - Altherr, Lena A1 - Leise, Philipp A1 - Pelz, Peter F. T1 - Optimization of pumping systems for buildings: Experimental validation of different degrees of model detail on a modular test rig T2 - Operations Research Proceedings 2019 N2 - Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge. KW - Experimental validation KW - MINLP KW - Engineering optimization KW - Water supply system KW - Network design Y1 - 2020 SN - 978-3-030-48438-5 U6 - http://dx.doi.org/10.1007/978-3-030-48439-2_58 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 SP - 481 EP - 488 PB - Springer CY - Cham ER - TY - CHAP A1 - Lorenz, Imke-Sophie A1 - Altherr, Lena A1 - Pelz, Peter F. ED - Neufeld, Janis S. ED - Buscher, Udo ED - Lasch, Rainer ED - Möst, Dominik ED - Schönberger, Jörn T1 - Assessing and Optimizing the Resilience of Water Distribution Systems Using Graph-Theoretical Metrics T2 - Operations Research Proceedings 2019 N2 - Water distribution systems are an essential supply infrastructure for cities. Given that climatic and demographic influences will pose further challenges for these infrastructures in the future, the resilience of water supply systems, i.e. their ability to withstand and recover from disruptions, has recently become a subject of research. To assess the resilience of a WDS, different graph-theoretical approaches exist. Next to general metrics characterizing the network topology, also hydraulic and technical restrictions have to be taken into account. In this work, the resilience of an exemplary water distribution network of a major German city is assessed, and a Mixed-Integer Program is presented which allows to assess the impact of capacity adaptations on its resilience. KW - OR 2019 KW - business analytics KW - decision analytics KW - digital economy KW - mathematical optimization Y1 - 2020 SN - 978-3-030-48439-2 SN - 978-3-030-48438-5 U6 - http://dx.doi.org/10.1007/978-3-030-48439-2_63 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 SP - 521 EP - 527 PB - Springer CY - Cham ER - TY - CHAP A1 - Leise, Philipp A1 - Simon, Nicolai A1 - Altherr, Lena T1 - Comparison of Piecewise Linearization Techniques to Model Electric Motor Efficiency Maps: A Computational Study T2 - Operations Research Proceedings 2019 N2 - To maximize the travel distances of battery electric vehicles such as cars or buses for a given amount of stored energy, their powertrains are optimized energetically. One key part within optimization models for electric powertrains is the efficiency map of the electric motor. The underlying function is usually highly nonlinear and nonconvex and leads to major challenges within a global optimization process. To enable faster solution times, one possibility is the usage of piecewise linearization techniques to approximate the nonlinear efficiency map with linear constraints. Therefore, we evaluate the influence of different piecewise linearization modeling techniques on the overall solution process and compare the solution time and accuracy for methods with and without explicitly used binary variables. KW - MINLP KW - Powertrain KW - Piecewise linearization KW - Efficiency optimization Y1 - 2020 SN - 978-3-030-48439-2 SN - 978-3-030-48438-5 U6 - http://dx.doi.org/10.1007/978-3-030-48439-2_55 N1 - Annual International Conference of the German Operations Research Society (GOR), Dresden, Germany, September 4-6, 2019 SP - 457 EP - 463 PB - Springer CY - Cham ER -