TY - CHAP A1 - Tomić, Igor A1 - Penna, Andrea A1 - DeJong, Matthew A1 - Butenweg, Christoph A1 - Correia, António A. A1 - Candeias, Paulo X. A1 - Senaldi, Ilaria A1 - Guerrini, Gabriele A1 - Malomo, Daniele A1 - Beyer, Katrin T1 - Seismic testing of adjacent interacting masonry structures T2 - 12th International Conference on Structural Analysis of Historical Constructions (SAHC 2020) N2 - In many historical centres in Europe, stone masonry buildings are part of building aggregates, which developed when the layout of the city or village was densified. In these aggregates, adjacent buildings share structural walls to support floors and roofs. Meanwhile, the masonry walls of the façades of adjacent buildings are often connected by dry joints since adjacent buildings were constructed at different times. Observations after for example the recent Central Italy earthquakes showed that the dry joints between the building units were often the first elements to be damaged. As a result, the joints opened up leading to pounding between the building units and a complicated interaction at floor and roof beam supports. The analysis of such building aggregates is very challenging and modelling guidelines do not exist. Advances in the development of analysis methods have been impeded by the lack of experimental data on the seismic response of such aggregates. The objective of the project AIMS (Seismic Testing of Adjacent Interacting Masonry Structures), included in the H2020 project SERA, is to provide such experimental data by testing an aggregate of two buildings under two horizontal components of dynamic excitation. The test unit is built at half-scale, with a two-storey building and a one-storey building. The buildings share one common wall while the façade walls are connected by dry joints. The floors are at different heights leading to a complex dynamic response of this smallest possible building aggregate. The shake table test is conducted at the LNEC seismic testing facility. The testing sequence comprises four levels of shaking: 25%, 50%, 75% and 100% of nominal shaking table capacity. Extensive instrumentation, including accelerometers, displacement transducers and optical measurement systems, provides detailed information on the building aggregate response. Special attention is paid to the interface opening, the globa KW - Historical centres KW - Stone masonry KW - Adjacent buildings KW - Shake table test Y1 - 2020 U6 - http://dx.doi.org/10.23967/sahc.2021.234 N1 - Wednesday, 16 September, 2020 to Friday, 18 September, 2020, Barcelona. SP - 1 EP - 12 ER - TY - JOUR A1 - Keller, Johannes A1 - Rath, Volker A1 - Bruckmann, Johanna A1 - Mottaghy, Darius A1 - Clauser, Christoph A1 - Wolf, Andreas A1 - Seidler, Ralf A1 - Bücker, H. Martin A1 - Klitzsch, Norbert T1 - SHEMAT-Suite: An open-source code for simulating flow, heat and species transport in porous media JF - SoftwareX N2 - SHEMAT-Suite is a finite-difference open-source code for simulating coupled flow, heat and species transport in porous media. The code, written in Fortran-95, originates from geoscientific research in the fields of geothermics and hydrogeology. It comprises: (1) a versatile handling of input and output, (2) a modular framework for subsurface parameter modeling, (3) a multi-level OpenMP parallelization, (4) parameter estimation and data assimilation by stochastic approaches (Monte Carlo, Ensemble Kalman filter) and by deterministic Bayesian approaches based on automatic differentiation for calculating exact (truncation error-free) derivatives of the forward code. Y1 - 2020 U6 - http://dx.doi.org/10.1016/j.softx.2020.100533 SN - 2352-7110 VL - 12 PB - Elsevier CY - Amsterdam ER - TY - CHAP A1 - Michel, Philipp A1 - Rosin, Julia A1 - Butenweg, Christoph A1 - Klinkel, Sven T1 - Soil-dependent earthquake spectra in the analysis of liquid-storage-tanks on compliant soil T2 - Seismic design of industrial facilities 2020: proceedings of the 2nd International Conference on Seismic Design of Industrial Facilities (SeDIF-Conference) Y1 - 2020 SN - 978-3-86359-729-0 SP - 245 EP - 254 ER - TY - JOUR A1 - Varga, Laszlo A1 - Davinson, Thomas A1 - Glorius, Jan A1 - Jurado, Beatrix A1 - Langer, Christoph A1 - Lederer-Woods, Claudia A1 - Litvinov, Yuri A. A1 - Reifarth, Rene A1 - Slavkovska, Zuzana A1 - Stöhlker, Thomas A1 - Woods, Phil J. A1 - Xing, Yuan Ming T1 - Towards background-free studies of capture reaction in a heavy-ion storage ring JF - Journal of Physics: Conference Series N2 - Stored and cooled, highly-charged ions offer unprecedented capabilities for precision studies in the realm of atomic, nuclear structure and astrophysics[1]. After the successful investigation of the 96Ru(p,7)97Rh reaction cross section in 2009[2], the first measurement of the 124Xe(p,7)125Cs reaction cross section has been performed with decelerated, fully-ionized 124Xe ions in 2016 at the Experimental Storage Ring (ESR) of GSI[3]. Using a Double Sided Silicon Strip Detector, introduced directly into the ultra-high vacuum environment of a storage ring, the 125Cs proton-capture products have been successfully detected. The cross section has been measured at 5 different energies between 5.5AMeV and 8AMeV, on the high energy tail of the Gamow-window for hot, explosive scenarios such as supernovae and X-ray binaries. The elastic scattering on the H2 gas jet target is the major source of background to count the (p,7) events. Monte Carlo simulations show that an additional slit system in the ESR in combination with the energy information of the Si detector will enable background free measurements of the proton-capture products. The corresponding hardware is being prepared and will increase the sensitivity of the method tremendously. Y1 - 2020 VL - 1668 IS - Art 012046 PB - IOP CY - Bristol ER -